Câu hỏi:

26/10/2025 8 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Nhà máy\(A\) chuyên sản xuất một loại sản phẩm cho nhà máy\(B\). Hai nhà máy thỏa thuận rằng, hằng tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm được biểu diễn bởi công thức: \(P\left( x \right) = 45 - 0,001{x^2}\) (triệu đồng). Cho phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng là \(C\left( x \right) = 100 + 30x\) triệu đồng (gồm \(100\)triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm).

a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(400\)triệu đồng.                  

b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\)\(600\)triệu đồng.               

c) Lợi nhuận mà \(A\) thu được khi bán \(x\) tấn sản phẩm \(\left( {0 \le x \le 100} \right)\) cho \(B\) được biểu diễn bởi công thức \(H\left( x \right) = - 0,001{x^3} + 15x - 100\).

d) Bên \(A\) bán cho \(B\) khoảng \(70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.

b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\)

\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.

c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)

\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).

d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)

Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).

Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).

Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(y = - x - 6 - \frac{{14}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0\).

Suy ra tiệm cận xiên của đồ thị hàm số là \(y = - x - 6\).

b) Phương trình đường tiệm cận đứng là \(x = 3\).

Suy ra giao điểm 2 tiệm cận là \(I\left( {3, - 9} \right)\) là tâm đối xứng.

c) \(y' = \frac{{ - {x^2} + 6x + 5}}{{{{\left( {x - 3} \right)}^2}}} = 0 \Leftrightarrow {x^2} - 6x - 5 = 0\) \(\left( * \right)\)

Phương trình \(\left( * \right)\) luôn có 2 nghiệm \({x_1} < 0 < {x_2}\) nên \(\left( C \right)\) luôn có 2 điểm cực trị nằm 2 phía đối với \(Oy\).

d) \(y = 0 \Leftrightarrow - {x^2} - 3x + 4 = 0\) và phương trình luôn có 2 nghiệm suy ra \(\left( C \right)\)cắt \(Ox\) tại hai điểm phân biệt.

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

Lời giải

Với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).

Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\). Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\)

Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).

Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:

\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).

Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2} = - 5,5\).

Trả lời: −5,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = 0.\]                     

B. \[S = - 2.\]                  
C. \[S = 2.\]                                   
D. \[S = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].                
B. \[y = \frac{{{x^2} + x - 1}}{{x - 2}}\].                             
C. \[y = \frac{{{x^2} - 2x - 1}}{{x - 2}}\].                            
D. \[y = \frac{{{x^2} + x + 1}}{{x - 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP