Câu hỏi:

26/10/2025 411 Lưu

Cho hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x - 3}}\) có đồ thị là \(\left( C \right)\).

a) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = - x - 6\).

b) Đồ thị \(\left( C \right)\) nhận giao điểm \(I\left( {3\,;\, - 9} \right)\) làm tâm đối xứng.

c) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm 2 phía đối với \(Oy\).

d) Đồ thị không cắt trục \(Ox\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(y = - x - 6 - \frac{{14}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0\).

Suy ra tiệm cận xiên của đồ thị hàm số là \(y = - x - 6\).

b) Phương trình đường tiệm cận đứng là \(x = 3\).

Suy ra giao điểm 2 tiệm cận là \(I\left( {3, - 9} \right)\) là tâm đối xứng.

c) \(y' = \frac{{ - {x^2} + 6x + 5}}{{{{\left( {x - 3} \right)}^2}}} = 0 \Leftrightarrow {x^2} - 6x - 5 = 0\) \(\left( * \right)\)

Phương trình \(\left( * \right)\) luôn có 2 nghiệm \({x_1} < 0 < {x_2}\) nên \(\left( C \right)\) luôn có 2 điểm cực trị nằm 2 phía đối với \(Oy\).

d) \(y = 0 \Leftrightarrow - {x^2} - 3x + 4 = 0\) và phương trình luôn có 2 nghiệm suy ra \(\left( C \right)\)cắt \(Ox\) tại hai điểm phân biệt.

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số đi qua các điểm \(A\left( { - 1; - 1} \right),B\left( {0;3} \right),C\left( {1;1} \right),D\left( {2; - 1} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - a + b - c + d = - 1\\d = 3\\a + b + c + d = 1\\8a + 4b + 2c + d = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 3\\c = 0\\d = 3\end{array} \right.\). Do đó \(S = {t^3} - 3{t^2} + 3\).

Khi đó \(v = S' = 3{t^2} - 6t\); \(a = S'' = 6t - 6 = 12 \Rightarrow t = 3\).

Khi đó vận tốc của chuyển động là \(S'\left( 3 \right) = 27 - 18 = 9\) m/s.

Trả lời: 9.

Lời giải

Đồ thị hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\) có đường tiệm cận đứng là đường thẳng \(x = - \frac{c}{b}\) và đường tiệm cận ngang là đường thẳng \(y = \frac{a}{b}\).

Từ bảng biến thiên ta có: \(\left\{ \begin{array}{l} - \frac{c}{b} = 2\\\frac{a}{b} = 1\end{array} \right. \Leftrightarrow a = b = - \frac{c}{2}\) \(\left( 1 \right)\)

Mặt khác: \(f'\left( x \right) = \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}}\).

Vì hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\) nên

\(f'\left( x \right) = \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}} > 0 \Leftrightarrow ac - b > 0\) \(\left( 2 \right)\)

Thay \(\left( 1 \right)\) vào \(\left( 2 \right)\), ta được: \( - \frac{{{c^2}}}{2} + \frac{c}{2} > 0 \Leftrightarrow - {c^2} + c > 0 \Leftrightarrow 0 < c < 1\).

Suy ra c là số dương và a, b là số âm.

Trả lời: 1.

Câu 3

A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].                
B. \[y = \frac{{{x^2} + x - 1}}{{x - 2}}\].                             
C. \[y = \frac{{{x^2} - 2x - 1}}{{x - 2}}\].                            
D. \[y = \frac{{{x^2} + x + 1}}{{x - 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = 0.\]                     

B. \[S = - 2.\]                  
C. \[S = 2.\]                                   
D. \[S = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[2\].                            

B. \[3\].                            
C. \[1\].                                 
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP