Câu hỏi:

26/10/2025 8 Lưu

Cho hàm số \[y = f\left( x \right) = {x^3} - 6{x^2} - 15x + 20\].

a) Đồ thị hàm số \(y = f\left( x \right)\) cắt trục tung tại điểm có tung độ bằng \(20\).

b) Hàm số đồng biến trên khoảng \(\left( { - \infty \,;\, - 1} \right) \cap \left( {5\,;\, + \infty } \right)\).

c) Tâm đối xứng của đồ thị hàm số có toạ độ \(I\left( {2\,;\, - 26} \right)\).

d) Giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên khoảng \(\left( { - 4\,;\, + \infty } \right)\) bằng \( - 80\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay \(x = 0\) suy ra \(f\left( 0 \right) = 20\).

b) Ta có \(y' = 3{x^2} - 12x - 15 > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 5\end{array} \right.\).

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {5; + \infty } \right)\).

c) \({x_I} = \frac{{ - b}}{{3a}} = \frac{{ - \left( { - 6} \right)}}{{3.1}} = \frac{6}{3} = 2 \Rightarrow {y_I} = f\left( {{x_I}} \right) = f\left( 2 \right) = - 26\) suy ra \(I\left( {2\,;\, - 26} \right)\).

d) Ta có \(f'\left( x \right) = 3{x^2} - 12x - 15 \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 5\end{array} \right.\)

Bảng biến thiên của hàm số trên khoảng \(\left( {4\,;\, + \infty } \right)\):

Cho hàm số \[y = f\left( x \right) = {x (ảnh 1)

Vậy giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên khoảng \(\left( { - 4\,;\, + \infty } \right)\) bằng \( - 80\).

Đáp án: a) Đúng;    b) Sai;   c) Đúng;   c) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(y = - x - 6 - \frac{{14}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0\).

Suy ra tiệm cận xiên của đồ thị hàm số là \(y = - x - 6\).

b) Phương trình đường tiệm cận đứng là \(x = 3\).

Suy ra giao điểm 2 tiệm cận là \(I\left( {3, - 9} \right)\) là tâm đối xứng.

c) \(y' = \frac{{ - {x^2} + 6x + 5}}{{{{\left( {x - 3} \right)}^2}}} = 0 \Leftrightarrow {x^2} - 6x - 5 = 0\) \(\left( * \right)\)

Phương trình \(\left( * \right)\) luôn có 2 nghiệm \({x_1} < 0 < {x_2}\) nên \(\left( C \right)\) luôn có 2 điểm cực trị nằm 2 phía đối với \(Oy\).

d) \(y = 0 \Leftrightarrow - {x^2} - 3x + 4 = 0\) và phương trình luôn có 2 nghiệm suy ra \(\left( C \right)\)cắt \(Ox\) tại hai điểm phân biệt.

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

Lời giải

Với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).

Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\). Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\)

Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).

Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:

\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).

Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2} = - 5,5\).

Trả lời: −5,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = 0.\]                     

B. \[S = - 2.\]                  
C. \[S = 2.\]                                   
D. \[S = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].                
B. \[y = \frac{{{x^2} + x - 1}}{{x - 2}}\].                             
C. \[y = \frac{{{x^2} - 2x - 1}}{{x - 2}}\].                            
D. \[y = \frac{{{x^2} + x + 1}}{{x - 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP