Trong không gian, cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai vectơ \(\overrightarrow {BD} \,,\,\overrightarrow {B'C} \)bằng
Quảng cáo
Trả lời:

Ta có: \(\overrightarrow {BD} \, = \,\,\overrightarrow {B'D'} \).
Do đó,\(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,\left( {\overrightarrow {B'D'} \,,\,\overrightarrow {B'C} } \right)\, = \widehat {\,D'B'C}\)
Vì \(B'C = \,CD'\, = \,D'B'\)nên tam giác \(B'CD'\)là tam giác đều.
Suy ra \(\widehat {\,D'B'C}\, = \,60^\circ \).
Vậy \(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,60^\circ \). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\). a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = {a^2}\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/16-1761392237.png)
a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = \overrightarrow {AD'} .\overrightarrow {{\rm{AA'}}} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AA'}}} } \right|{\rm{cos45}}^\circ = {a^2}\].
b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AB'}}} } \right|{\rm{cos60}}^\circ = {a^2}\].
c) \[\overrightarrow {AB'} .\overrightarrow {C{\rm{D'}}} = \overrightarrow {AB'} .\overrightarrow {{\rm{BA'}}} = 0\].
d) \[\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{C^2} + C{{C'}^2}} = \sqrt {A{B^2} + B{C^2} + C{{C'}^2}} = a\sqrt 3 \].
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Đúng.
Lời giải

Ta có \(\overrightarrow {A'B} = \overrightarrow {A'A} + \overrightarrow {AB} = \overrightarrow {AB} - \overrightarrow {AA'} \)
\(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \)
\( \Rightarrow \overrightarrow {A'B} .\overrightarrow {AC'} = \left( {\overrightarrow {AB} - \overrightarrow {AA'} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right) = {\overrightarrow {AB} ^2} - {\overrightarrow {AA'} ^2} = 0\).
\( \Rightarrow \)Góc giữa hai véc tơ \(\overrightarrow {A'B} \) và \(\overrightarrow {AC'} \) bằng \(90^\circ \).
Trả lời: 90.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\overrightarrow {BD} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\overrightarrow {B'C'} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hình hộp \[ABCD.EFGH\]. Kết quả quả phép toán \[\overrightarrow {AB} - \overrightarrow {EH} \] là A. \[\overrightarrow {BD} \]. B. \[\overrightarrow {AE} \]. C. \[\overrightarrow {DB} \]. D. \[\overrightarrow {BH} \]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761391058.png)
![Do \[ABCD.A'B'C'D'\] là hình l (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/11-1761391014.png)