Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\).
a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = {a^2}\].
b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = {a^2}\].
c) \[\overrightarrow {AB'} .\overrightarrow {CD'} = 0\].
d) \[\left| {\overrightarrow {AC'} } \right| = a\sqrt 3 \].
Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\).
a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = {a^2}\].
b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = {a^2}\].
c) \[\overrightarrow {AB'} .\overrightarrow {CD'} = 0\].
d) \[\left| {\overrightarrow {AC'} } \right| = a\sqrt 3 \].
Quảng cáo
Trả lời:
![Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\). a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = {a^2}\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/16-1761392237.png)
a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = \overrightarrow {AD'} .\overrightarrow {{\rm{AA'}}} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AA'}}} } \right|{\rm{cos45}}^\circ = {a^2}\].
b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AB'}}} } \right|{\rm{cos60}}^\circ = {a^2}\].
c) \[\overrightarrow {AB'} .\overrightarrow {C{\rm{D'}}} = \overrightarrow {AB'} .\overrightarrow {{\rm{BA'}}} = 0\].
d) \[\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{C^2} + C{{C'}^2}} = \sqrt {A{B^2} + B{C^2} + C{{C'}^2}} = a\sqrt 3 \].
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Có \(OADB\) là hình bình hành nên \(\overrightarrow {BO} + \overrightarrow {BD} = \overrightarrow {BA} \) (quy tắc hình bình hành).
b) Có \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} ;\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OE} \).
Do đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \).
c) Vì \(OADB\) là hình bình hành và \(\widehat {BOA} = 120^\circ \Rightarrow \widehat {OBD} = 60^\circ \).
Xét \(\Delta OBD\) có \(OD = \sqrt {O{B^2} + B{D^2} - 2.OB.BD.\cos 60^\circ } = \sqrt {{{24}^2} + {{12}^2} - 2.24.12.\cos 60^\circ } = 12\sqrt 3 \) N.
d) Ta có \(\Delta OCE\) vuông tại \(C\), ta có \(OE = \sqrt {O{C^2} + C{E^2}} = \sqrt {{6^2} + {{\left( {12\sqrt 3 } \right)}^2}} = 6\sqrt {13} \) N.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải

Trả lời: 0,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\overrightarrow {B'C'} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\overrightarrow {NM} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là h (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/15-1761392134.png)
![Do \[ABCD.A'B'C'D'\] là hình l (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/11-1761391014.png)