Câu hỏi:

26/10/2025 12 Lưu

Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\).

a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = {a^2}\].

b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = {a^2}\].

c) \[\overrightarrow {AB'} .\overrightarrow {CD'} = 0\].

d) \[\left| {\overrightarrow {AC'} } \right| = a\sqrt 3 \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình lập phương \[ABCD.A'B'C'D'\], có cạnh \(a\).  a) \[\overrightarrow {AD'} .\overrightarrow {CC'}  = {a^2}\]. (ảnh 1)

a) \[\overrightarrow {AD'} .\overrightarrow {CC'} = \overrightarrow {AD'} .\overrightarrow {{\rm{AA'}}} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AA'}}} } \right|{\rm{cos45}}^\circ = {a^2}\].

b) \[\overrightarrow {AD'} .\overrightarrow {AB'} = \left| {\overrightarrow {AD'} } \right|.\left| {\overrightarrow {{\rm{AB'}}} } \right|{\rm{cos60}}^\circ = {a^2}\].

c) \[\overrightarrow {AB'} .\overrightarrow {C{\rm{D'}}} = \overrightarrow {AB'} .\overrightarrow {{\rm{BA'}}} = 0\].

d) \[\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{C^2} + C{{C'}^2}} = \sqrt {A{B^2} + B{C^2} + C{{C'}^2}} = a\sqrt 3 \].

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có \(OADB\) là hình bình hành nên \(\overrightarrow {BO} + \overrightarrow {BD} = \overrightarrow {BA} \) (quy tắc hình bình hành).

b) Có \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} ;\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OE} \).

Do đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \).

c) Vì \(OADB\) là hình bình hành và \(\widehat {BOA} = 120^\circ \Rightarrow \widehat {OBD} = 60^\circ \).

Xét \(\Delta OBD\)\(OD = \sqrt {O{B^2} + B{D^2} - 2.OB.BD.\cos 60^\circ } = \sqrt {{{24}^2} + {{12}^2} - 2.24.12.\cos 60^\circ } = 12\sqrt 3 \) N.

d) Ta có \(\Delta OCE\) vuông tại \(C\), ta có \(OE = \sqrt {O{C^2} + C{E^2}} = \sqrt {{6^2} + {{\left( {12\sqrt 3 } \right)}^2}} = 6\sqrt {13} \) N.

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Câu 2

A. \[\overrightarrow {BD} \].                                

B. \[\overrightarrow {AE} \].                                     
C. \[\overrightarrow {DB} \].                                     
D. \[\overrightarrow {BH} \].

Lời giải

Do \[ABCD.EFGH\] là hình hộp nên \[EH = AD\] và hai vecto \[\overrightarrow {EH} ,\overrightarrow {AD} \] cùng hướng nên \[\overrightarrow {EH} = \overrightarrow {AD} \]

Ta có \[\overrightarrow {AB} - \overrightarrow {EH} = \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {DB} \]. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(30^\circ \).               
B. \(45^\circ \).               
C. \(60^\circ \).                    
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP