Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1;\,1;\, - 2} \right)\) và \(B\left( {2;\,2;\,1} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là
Quảng cáo
Trả lời:
\(\overrightarrow {AB} = \left( {2 - 1;\,2 - 1;\,1 - \left( { - 2} \right)} \right)\) hay \(\overrightarrow {AB} = \left( {1;\,1;\,3} \right)\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(D\left( {x;y;z} \right)\) là vị trí của máy bay sau 10 phút bay tiếp theo (tính từ thời điểm máy bay ở điểm \(B\)).
Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BD} \) cùng hướng.
Do vận tốc máy bay không đổi và thời gian bay từ \(A\) đến \(B\) bằng thời gian bay từ \[B\] đến \(D\) nên \(AB = BD\).
Do đó, \(\overrightarrow {BD} = \overrightarrow {AB} = \left( {140;50;1} \right)\).
Mặt khác: \(\overrightarrow {BD} = \left( {x - 940;y - 550;z - 8} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 140}\\{y - 550 = 50}\\{z - 8 = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1080}\\{y = 600}\\{z = 9}\end{array}} \right.} \right.\).
Vậy \(D\left( {1080;600;9} \right)\). Vậy tọa độ của máy bay trong 10 phút tiếp theo là \(\left( {1080;600;9} \right)\).
Suy ra \(x + y + z = 1689\).
Trả lời: 1689.
Lời giải

a) Ta có \(\vec a = (2;2;0) \Rightarrow \vec a = 2\vec i + 2\overrightarrow j \).
b) Ta có \(\vec b = 2\vec j + 2\vec k \Rightarrow \vec b = (0;2;2)\).
c) Ta có \(\overrightarrow {OA} = \vec a\) thì toạ độ véc tơ \(\vec a\) cũng chính là toạ độ \(A\)\( \Rightarrow A\left( {2;2;0} \right)\).
Tương tự \(B(0;2;2)\). Suy ra \(\overrightarrow {AB} = ( - 2;0;2)\).
d) Có \(\cos \widehat {AOB} = \frac{{\overrightarrow {OA} .\overrightarrow {OB} }}{{\left| {\overrightarrow {OA} } \right|.\left| {\overrightarrow {OB} } \right|}} = \frac{{2.0 + 2.2 + 0.2}}{{\sqrt {{2^2} + {2^2}} .\sqrt {{2^2} + {2^2}} }} = \frac{1}{2}\)\( \Rightarrow \widehat {AOB} = 60^\circ \).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

