Trong hệ trục tọa độ \[Oxyz\], cho hai điểm là \[A\left( {1;3; - 1} \right)\], \[\overrightarrow {AB} = \left( {3; - 1;5} \right)\]. Tọa độ của \[\overrightarrow {OB} \] là
Quảng cáo
Trả lời:
Ta có \[\overrightarrow {AB} = \left( {3; - 1;5} \right)\]\[ \Leftrightarrow \left\{ \begin{array}{l}{x_B} - {x_A} = 3\\{y_B} - {y_A} = - 1\\{z_B} - {z_A} = 5\end{array} \right.\].\[ \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 1 = 3\\{y_B} - 3 = - 1\\{z_B} + 1 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4\\{y_B} = 2\\{z_B} = 4\end{array} \right.\].
Vậy \[B\left( {4;2;4} \right)\] hay \[\overrightarrow {OB} = \left( {4\,;\,2\,;\,4} \right)\]. Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi tọa độ điểm \(A'\) là (x;y;z) \[ \Rightarrow \overrightarrow {A'C'} = \left( { - 1 - x;2 - y;1 - z} \right)\].
Khi đó \[\overrightarrow {AC} = \left( { - 2;2;0} \right)\]. Vì \(ACC'A'\) là hình bình hành nên \[\overrightarrow {A'C'} = \overrightarrow {AC} \]
Suy ra\[\left\{ \begin{array}{l} - 1 - x = - 2\\2 - y = 2\\1 - z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right. \Rightarrow A'\left( {1\,;\,0\,;\,1} \right)\]. Làm tương tự ta có: \[B'\left( {0\,;\,4\,;\,2} \right)\].
b) Gọi . Có Suy ra \[B\left( {1\,;\,5\,;\,1} \right)\].
Gọi \(D\left( {x;y;z} \right)\). Có .Suy ra \[D\left( {1\,;\, - 1\,; - \,1} \right)\].
c) \[\overrightarrow {AB} = \left( { - 1;4;1} \right) \Rightarrow \overrightarrow {AB} = - \overrightarrow i + 4\overrightarrow j + \overrightarrow k \].
d) \[\overrightarrow {B'D} = \left( {1; - 5; - 3} \right) \Rightarrow \overrightarrow {B'D} = \overrightarrow i - 5\overrightarrow j - 3\overrightarrow k \].
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Ta có \[\overrightarrow {O'C'} = \overrightarrow {AB} = \left( { - 2\,;\,2\,;\,2} \right) \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - {x_{O'}} = - 2\\{y_{C'}} - {y_{O'}} = 2\\{z_{C'}} - {z_{O'}} = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{O'}} = 4\\{y_{O'}} = - 5\\{z_{O'}} = 3\end{array} \right. \Rightarrow O'\left( {4\,;\, - 5\,;\,3} \right)\].
Suy ra \(a = 4;b = - 5;c = 3\). Vậy \(a + b + c = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

