Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\vec a = \left( {2; - 3;3} \right)\), \(\vec b = \left( {0;2; - 1} \right)\), \(\vec c = \left( {3; - 1;5} \right)\). Tìm tọa độ của vectơ \(\vec u = 2\vec a + 3\vec b - 2\vec c\).
Quảng cáo
Trả lời:
Ta có: \(2\vec a = \left( {4; - 6;6} \right)\), \(3\vec b = \left( {0;6; - 3} \right)\), \( - 2\vec c = \left( { - 6;2; - 10} \right)\) \( \Rightarrow \vec u = 2\vec a + 3\vec b - 2\vec c = \left( { - 2;2; - 7} \right)\). Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \[H\] là hình chiếu vuông góc của \[A\left( {2; - 3;5} \right)\] lên \[Oy\]. Suy ra \[H\left( {0; - 3;0} \right)\]
Khi đó \[H\] là trung điểm đoạn \[AA'\].
\(\left\{ \begin{array}{l}{x_{A'}} = 2{x_H} - {x_A} = - 2\\{y_{A'}} = 2{y_H} - {y_A} = - 3\\{z_{A'}} = 2{z_H} - {z_A} = - 5\end{array} \right.\)\( \Rightarrow A'\left( { - 2; - 3; - 5} \right)\). Chọn D.
Câu 2
Lời giải
Ta có: \(\overrightarrow {AB} = \left( { - 1;\;0;\;1} \right),\overrightarrow {AC} = \left( {1;\;1;\;1} \right)\)\( \Rightarrow \left( { - 1} \right).1 + 0.1 + 1.1 = 0 \Rightarrow AB \bot AC\).
Nên diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB.AC = \frac{{\sqrt 6 }}{2}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
