Câu hỏi:

26/10/2025 6 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A\(\left( {1; - 3;1} \right)\), B\(\left( {3;0; - 2} \right)\). Tính độ dài \(AB\).

A. 26.                               
B. 22.                               
C. \(\sqrt {26} \).   
D. \(\sqrt {22} .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\overrightarrow {AB} = (2;3; - 3) \Rightarrow AB = \sqrt {{2^2} + {3^2} + {{( - 3)}^2}} = \sqrt {22} .\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{\sqrt {11} }}{2}\).                             
B. \(\frac{{\sqrt 7 }}{2}\).  
C. \(\frac{{\sqrt 6 }}{2}\).                         
D. \(\frac{{\sqrt 5 }}{2}\).

Lời giải

Ta có: \(\overrightarrow {AB} = \left( { - 1;\;0;\;1} \right),\overrightarrow {AC} = \left( {1;\;1;\;1} \right)\)\( \Rightarrow \left( { - 1} \right).1 + 0.1 + 1.1 = 0 \Rightarrow AB \bot AC\).

Nên diện tích tam giác \(ABC\)\(S = \frac{1}{2}AB.AC = \frac{{\sqrt 6 }}{2}\). Chọn C.

Câu 2

A. \(A'\left( {2;3;5} \right)\).                                                                   
B. \(A'\left( {2; - 3; - 5} \right)\).       
C. \(A'\left( { - 2; - 3;5} \right)\).                                                                   
D. \(A'\left( { - 2; - 3; - 5} \right)\).

Lời giải

Gọi \[H\] là hình chiếu vuông góc của \[A\left( {2; - 3;5} \right)\] lên \[Oy\]. Suy ra \[H\left( {0; - 3;0} \right)\]

Khi đó \[H\] là trung điểm đoạn \[AA'\].

\(\left\{ \begin{array}{l}{x_{A'}} = 2{x_H} - {x_A} = - 2\\{y_{A'}} = 2{y_H} - {y_A} = - 3\\{z_{A'}} = 2{z_H} - {z_A} = - 5\end{array} \right.\)\( \Rightarrow A'\left( { - 2; - 3; - 5} \right)\). Chọn D.

Câu 4

A. \(\left( {10; - 2;13} \right)\).                              
B. \(\left( { - 2;2; - 7} \right)\).            
C. \(\left( { - 2; - 2;7} \right)\).                         
D. \(\left( { - 2;2;7} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP