Một lò xo bị dãn 1 cm khi chịu tác dụng một lực là 1 N. Nếu kéo dãn lò xo khỏi vị trí cân bằng một đoạn 2 cm thì thế năng của lò xo này là:
Quảng cáo
Trả lời:
Đáp án đúng là A
(END.6283.00)Lực đàn hồi của lò xo khi lò xo dãn 1 cm: \({F_{dh}} = k.\Delta \ell \Rightarrow 1 = k.0,01 \Rightarrow k = 100\,N/m.\)
Thế năng của con lắc lò xo ở vị trí x = 2 cm: \[{{\rm{W}}_t} = \frac{{k{x^2}}}{2} = \frac{{100.0,{{02}^2}}}{2} = 0,02\,J.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bài cho biết:
Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)
Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)
Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:
\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]
Lời giải
Biên độ dao động \(A = 4\,cm\,.\)
Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha = \frac{\pi }{2}\,rad\,.\)
Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega = 2\pi \)rad/s.
Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.
Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi = 2\pi - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi = 2\pi - \frac{\pi }{4} \Rightarrow \varphi = \frac{{7\pi }}{4}\,rad\,.\)
Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
