Câu hỏi:

30/10/2025 28 Lưu

Một lò xo bị dãn 1 cm khi chịu tác dụng một lực là 1 N. Nếu kéo dãn lò xo khỏi vị trí cân bằng một đoạn 2 cm thì thế năng của lò xo này là:

A. 0,02 J.                               
B. 1 J.
C. 0,4 J.                                 
D. 0,04 J.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

(END.6283.00)Lực đàn hồi của lò xo khi lò xo dãn 1 cm: \({F_{dh}} = k.\Delta \ell  \Rightarrow 1 = k.0,01 \Rightarrow k = 100\,N/m.\)

Thế năng của con lắc lò xo ở vị trí x = 2 cm: \[{{\rm{W}}_t} = \frac{{k{x^2}}}{2} = \frac{{100.0,{{02}^2}}}{2} = 0,02\,J.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bài cho biết:

Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)

Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)

Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:

\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega  = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]

Lời giải

Biên độ dao động \(A = 4\,cm\,.\)

Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha  = \frac{\pi }{2}\,rad\,.\)

Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega  = 2\pi \)rad/s.

Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.

Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi  = 2\pi  - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi  = 2\pi  - \frac{\pi }{4} \Rightarrow \varphi  = \frac{{7\pi }}{4}\,rad\,.\)

Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP