Khi nói về dao động cưỡng bức đã ổn định, phát biểu nào sau đây là sai?
Khi nói về dao động cưỡng bức đã ổn định, phát biểu nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là C
Dao động cưỡng bức có tần số luôn bằng tần số của ngoại lực cưỡng bức \( \Rightarrow \) A đúng, C sai.
Biên độ của dao động cưỡng bức phụ thuộc vào biên độ của lực cưỡng bức và độ chênh lệch giữa tần số của ngoại lực và tần số riêng của hệ \( \Rightarrow \)B, D đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bài cho biết:
Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)
Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)
Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:
\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]
Lời giải
Biên độ dao động \(A = 4\,cm\,.\)
Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha = \frac{\pi }{2}\,rad\,.\)
Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega = 2\pi \)rad/s.
Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.
Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi = 2\pi - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi = 2\pi - \frac{\pi }{4} \Rightarrow \varphi = \frac{{7\pi }}{4}\,rad\,.\)
Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
