Hình chiếu của một chất điểm chuyển động tròn đều lên một đường kính của quỹ đạo có chuyển động là dao động điều hòa. Phát biểu nào đúng, phát biểu nào sai?
a) Tần số góc của dao động điều hòa bằng tốc độ góc của chuyển động tròn đều.
b) Biên độ của dao động điều hòa bằng bán kính của chuyển động tròn đều.
c) Lực kéo về trong dao động điều hòa có độ lớn bằng độ lớn lực hướng tâm trong chuyển động tròn đều.
d) Tốc độ cực đại của dao động điều hòa gấp hai lần tốc độ dài của chuyển động tròn đều.
Hình chiếu của một chất điểm chuyển động tròn đều lên một đường kính của quỹ đạo có chuyển động là dao động điều hòa. Phát biểu nào đúng, phát biểu nào sai?
a) Tần số góc của dao động điều hòa bằng tốc độ góc của chuyển động tròn đều.
b) Biên độ của dao động điều hòa bằng bán kính của chuyển động tròn đều.
c) Lực kéo về trong dao động điều hòa có độ lớn bằng độ lớn lực hướng tâm trong chuyển động tròn đều.
d) Tốc độ cực đại của dao động điều hòa gấp hai lần tốc độ dài của chuyển động tròn đều.
Quảng cáo
Trả lời:
a) Đúng.
b) Đúng.
c) Sai. Lực kéo về cực đại trong dao động điều hòa, có độ lớn bằng lực hướng tâm trong chuyển động tròn đều.
d) Sai. Tốc độ cực đại của dao động điều hòa bằng tốc độ dài của chuyển động tròn đều.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bài cho biết:
Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)
Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)
Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:
\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]
Lời giải
Biên độ dao động \(A = 4\,cm\,.\)
Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha = \frac{\pi }{2}\,rad\,.\)
Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega = 2\pi \)rad/s.
Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.
Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi = 2\pi - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi = 2\pi - \frac{\pi }{4} \Rightarrow \varphi = \frac{{7\pi }}{4}\,rad\,.\)
Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
