Một con lắc đơn khối lượng 200 g dao động nhỏ với chu kỳ T = 1 s, quỹ đạo coi như thẳng có chiều dài 4 cm. Chọn mốc thế năng ở vị trí cân bằng. Tìm thế năng của vật tại vị trí \(\alpha = \frac{{{\alpha _0}}}{2}?\)
Một con lắc đơn khối lượng 200 g dao động nhỏ với chu kỳ T = 1 s, quỹ đạo coi như thẳng có chiều dài 4 cm. Chọn mốc thế năng ở vị trí cân bằng. Tìm thế năng của vật tại vị trí \(\alpha = \frac{{{\alpha _0}}}{2}?\)
Quảng cáo
Trả lời:
Biên độ dài của con lắc: \({S_0} = \frac{L}{2} = 2\,cm = 0,02\,m\,.\)
Chiều dài của con lắc: \(\ell = \frac{{g{T^2}}}{{4{\pi ^2}}} = \frac{{10.1}}{{4.10}} = 0,25\,m.\)
Suy ra biên độ góc của con lắc: \({\alpha _0} = \frac{{{S_0}}}{\ell } = 0,08\,rad\,.\)
Thế năng của vật tại vị trí \(\alpha = \frac{{{\alpha _0}}}{2} = 0,04\,rad:\)
\[{{\rm{W}}_t} = \frac{1}{2}mg\ell {\alpha ^2} = \frac{1}{2}.0,2.10.0,25.0,{04^2} = {4.10^{ - 4}}\,J.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bài cho biết:
Ở thời điểm t1:\({x_1} = 4\,\left( {cm} \right),\,{v_1} = 30\pi \,\left( {cm/s} \right).\)
Ở thời điểm t2:\({x_2} = 3\,\left( {cm} \right),\,{v_2} = 40\pi \,\left( {cm/s} \right).\)
Liên hệ giữa x và v: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Thay các giá trị x và v ở hai thời điểm vào (1) ta có hệ phương trình:
\[\left\{ \begin{array}{l}\frac{{{4^2}}}{{{A^2}}} + \frac{{{{\left( {30\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\\\frac{{{3^2}}}{{{A^2}}} + \frac{{{{\left( {40\pi } \right)}^2}}}{{{{\left( {\omega A} \right)}^2}}} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{1}{{{A^2}}} = \frac{1}{{25}}\\\frac{1}{{{{\left( {\omega A} \right)}^2}}} = \frac{1}{{2500{\pi ^2}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega A = 50\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\\omega = 10\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 5\\f = 5\end{array} \right.\]
Lời giải
Biên độ dao động \(A = 4\,cm\,.\)
Vị trí\(x = 2\sqrt 2 \,cm\) trên đường tròn biên độ 4 cm \( \Rightarrow \alpha = \frac{\pi }{2}\,rad\,.\)
Suy ra:\(\omega .\left( {\frac{{19}}{{24}} - \frac{{13}}{{24}}} \right) = \frac{\pi }{2} \Rightarrow \omega = 2\pi \)rad/s.
Ban đầu có li độ âm và đồ thị giảm nên được biểu diễn bởi điểm M0 trên đường tròn.
Pha dao động tại N: \({\varphi _N} = \omega {t_N} + \varphi = 2\pi - \frac{\alpha }{2} \Rightarrow 2\pi .\frac{{13}}{{24}} + \varphi = 2\pi - \frac{\pi }{4} \Rightarrow \varphi = \frac{{7\pi }}{4}\,rad\,.\)
Vậy phương trình dao động: \(x = 4\cos \left( {2\pi t + \frac{{7\pi }}{4}} \right)\,cm\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
