Một chất điểm dao động điều hòa với biên độ bằng 4 cm và tần số bằng 2,5 Hz. Tốc độ cực đại và gia tốc cực đại của chất điểm trong quá trình dao động lần lượt là bao nhiêu?
Một chất điểm dao động điều hòa với biên độ bằng 4 cm và tần số bằng 2,5 Hz. Tốc độ cực đại và gia tốc cực đại của chất điểm trong quá trình dao động lần lượt là bao nhiêu?
Quảng cáo
Trả lời:
Tần số \[f = 2,5\,Hz \Rightarrow \omega = 2\pi f = 5\pi \,rad/s\]
Tốc độ cực đại: \[{v_{\max }} = A\omega = 0,04.5\pi = 0,2\pi \,m/s\]
Gia tốc cực đại: \[{a_{\max }} = A{\omega ^2} = 0,04.25{\pi ^2} = 10m/{s^2}\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đối chiếu phương trình \[x = 5\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\] cm với phương trình định nghĩa dao động điều hòa \[x = A\cos \left( {\omega t + \varphi } \right)\] thì
+ Tần số góc \[\omega = \pi \,\left( {rad/s} \right)\], sử dụng công thức \[\omega = 2\pi f = \frac{{2\pi }}{T}\] ta tính được
Tần số \[f = 0,5Hz\] và chu kỳ T = 1 s.
+ Pha ban đầu của vật phải là \[ - \frac{{2\pi }}{3}\]
+ Pha dao động tại thời điểm t là \[\left( {\pi t - \frac{{2\pi }}{3}} \right)\], sau đó thay \[t = 1,5s\] vào ta được \[\left( {\pi 1,5 - \frac{{2\pi }}{3}} \right) = \frac{{5\pi }}{6}\]
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Với dao động điều hòa của con lắc lò xo, ta có
\(\left\{ \begin{array}{l}{{\rm{W}}_d} = {\rm{W}} - {{\rm{W}}_t}\\\frac{{{{\rm{W}}_d}}}{{\rm{W}}} = \frac{{{\rm{W}} - {{\rm{W}}_t}}}{{\rm{W}}}\end{array} \right. \Rightarrow \frac{{{{\rm{W}}_d}}}{{\rm{W}}} = \frac{{{A^2} - {x^2}}}{{{x^2}}}\)
Với giả thuyết bài toán ta có: \(\frac{{{{\rm{W}}_d}}}{{\rm{W}}} = \frac{{{{10}^2} - {5^2}}}{{{{10}^2}}} = \frac{3}{4} \Leftrightarrow \frac{{0,3}}{{\rm{W}}} = \frac{3}{4} \Rightarrow {\rm{W}} = 0,4J\)
Độ cứng của lò xo \({\rm{W}} = \frac{1}{2}k{A^2} \Leftrightarrow 0,4 = \frac{1}{2}k.{\left( {{{10.10}^{ - 2}}} \right)^2} \Rightarrow k = 80\) N/m.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.