Câu hỏi:

05/11/2025 62 Lưu

Một vật dao động điều hòa có gia tốc a, vận tốc v, tần số góc \[\omega \].

Đặt \[\alpha = \frac{1}{{{\omega ^2}}},\beta = \frac{{{v^2}}}{{{A^2}}},\gamma = \frac{{{a^2}}}{{{\omega ^2}{A^2}}}\] thì có biểu thức:

A. \[\gamma \left( {\beta \alpha + \gamma } \right) = 1\].

B. \[\beta \left( {\alpha + \gamma } \right) = 1\].

C. \[\alpha \left( {\beta + \gamma } \right) = 1\].

D. \[\gamma \left( {\alpha + \beta \gamma } \right) = 1\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Ta có: v=x'=20πsin4πt.

Khi t = 5 s thì \[v = - 20\pi \sin 20\pi = 0\left( {cm/s} \right).\]

Lời giải

Ta có: \[\omega = \sqrt {\frac{g}{{\Delta l}}} = \sqrt {\frac{{10}}{{0,05}}} = 10\sqrt 2 \left( {rad/s} \right)\]

\[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]

Từ đó: \[{v_0} = \pm \omega \sqrt {{A^2} - {x^2}} = \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}} = 40\left( {cm/s} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP