Câu hỏi:

21/11/2025 12 Lưu

(1,0 điểm) Phân tích các đa thức sau thành nhân tử:

a) \(25{x^2}\left( {x - 3y} \right) - 15\left( {3y - x} \right);\)                                                  b) \({x^4} - 5{x^2} + 4.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) \(25{x^2}\left( {x - 3y} \right) - 15\left( {3y - x} \right)\)

\( = 25{x^2}\left( {x - 3y} \right) + 15\left( {x - 3y} \right)\)

\( = \left( {x - 3y} \right)\left( {25{x^2} + 15} \right)\)

\( = 5\left( {x - 3y} \right)\left( {5{x^2} + 3} \right).\)

b) \({x^4} - 5{x^2} + 4\)

\( = {x^4} - {x^2} - 4{x^2} + 4\)

\( = {x^2}\left( {{x^2} - 1} \right) - 4\left( {{x^2} - 1} \right)\)

\( = \left( {{x^2} - 4} \right)\left( {{x^2} - 1} \right)\)

\( = \left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{AM}}{{MN}} = \frac{{AB}}{{BC}}.\)          
B. \(\frac{{AN}}{{AC}} = \frac{{BP}}{{BC}}.\)
C. \(\frac{{CP}}{{BP}} = \frac{{CN}}{{AN}}.\)     
D. \(\frac{{MN}}{{BC}} = \frac{{NP}}{{AB}}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Xét \(\Delta ABC\) với \[MN\,{\rm{//}}\,BC,\] ta có:

\(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) (hệ quả của định lí Thalès). Suy ra \(\frac{{AM}}{{MN}} = \frac{{AB}}{{BC}}.\) Do đó A là khẳng định đúng.

Xét \(\Delta ABC\) với \[NP\,{\rm{//}}\,AB\,,\] ta có:

\(\frac{{AN}}{{AC}} = \frac{{BP}}{{BC}}\) (hệ quả của định lí Thalès). Do đó B là khẳng định đúng.

\(\frac{{CP}}{{BP}} = \frac{{CN}}{{AN}}\) (định lí Thalès). Do đó C là khẳng định đúng.

\(\frac{{CN}}{{AC}} = \frac{{NP}}{{AB}}\) (hệ quả của định lí Thalès).

Ta có \(AN \ne CN\) nên \(\frac{{AN}}{{AC}} \ne \frac{{CN}}{{AC}}\).

\(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\)\(\frac{{CN}}{{AC}} = \frac{{NP}}{{AB}}\) nên \(\frac{{MN}}{{BC}} \ne \frac{{NP}}{{AB}}.\) Do đó D là khẳng định sai.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

a) Ta có

\(A = 2xy\left( {x{y^2} - 3{x^2}y + 1} \right) = 2xy \cdot x{y^2} - 2xy \cdot 3{x^2}y + 2xy \cdot 1 = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy.\)

\[B = \left( {12{x^4}{y^5} - 36{x^5}{y^4} + 6{x^3}{y^3}} \right):6{x^2}{y^2}\]

 \[ = 12{x^4}{y^5}:\left( {6{x^2}{y^2}} \right) - 36{x^5}{y^4}:\left( {6{x^2}{y^2}} \right) + 6{x^3}{y^3}:\left( {6{x^2}{y^2}} \right)\]

 \[ = 2{x^2}{y^3} - 6{x^3}{y^2} + xy\]

Mà \(A = M + B.\)

Suy ra \(M = A - B\)

 \(M = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - \left( {2{x^2}{y^3} - 6{x^3}{y^2} + xy} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - 2{x^2}{y^3} + 6{x^3}{y^2} - xy\)

\( = \left( {2{x^2}{y^3} - 2{x^2}{y^3}} \right) + \left( { - 6{x^3}{y^2} + 6{x^3}{y^2}} \right) + \left( {2xy - xy} \right)\)

\( = xy.\)

Vậy \(M = xy.\)

b) Thay \(x =  - \frac{1}{4};\) \(y = 3\) vào \(M = xy\) đã thu gọn ở câu a, ta được:

\(M =  - \frac{1}{4} \cdot 3 =  - \frac{3}{4}.\)

Vậy \(M =  - \frac{3}{4}\) khi \(x =  - \frac{1}{4};\) \(y = 3.\)

Câu 4

A. 1.                         
B. 2.                         
C. 3.                             
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP