(1,5 điểm) Biểu đồ cột kép ở hình bên dưới biểu diễn trị giá xuất khẩu, nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 của nước ta.

a) Lập bảng thống kê trị giá xuất khẩu, nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 (đơn vị: tỷ USD) theo mẫu sau:
Giai đoạn
Quý I/2020
Quý I/2021
Quý I/2022
Xuất khẩu
?
?
?
Nhập khẩu
?
?
?
b) Tổng trị giá nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 là bao nhiêu tỷ USD?
c) Giá trị xuất khẩu hàng hóa của nước ta trong quý I năm 2021 tăng hay giảm bao nhiêu phần trăm so với quý I năm 2020 (làm tròn kết quả đến hàng phần mười)?
(1,5 điểm) Biểu đồ cột kép ở hình bên dưới biểu diễn trị giá xuất khẩu, nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 của nước ta.

a) Lập bảng thống kê trị giá xuất khẩu, nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 (đơn vị: tỷ USD) theo mẫu sau:
|
Giai đoạn |
Quý I/2020 |
Quý I/2021 |
Quý I/2022 |
|
Xuất khẩu |
? |
? |
? |
|
Nhập khẩu |
? |
? |
? |
b) Tổng trị giá nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 là bao nhiêu tỷ USD?
c) Giá trị xuất khẩu hàng hóa của nước ta trong quý I năm 2021 tăng hay giảm bao nhiêu phần trăm so với quý I năm 2020 (làm tròn kết quả đến hàng phần mười)?
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Từ biểu đồ cột kép, ta hoàn thành được bảng thống kê như sau:
|
Giai đoạn |
Quý I/2020 |
Quý I/2021 |
Quý I/2022 |
|
Xuất khẩu |
\[63,4\] |
\[78,56\] |
\[89,1\] |
|
Nhập khẩu |
\[59,59\] |
\[76,1\] |
\[87,64\] |
b) Tổng trị giá nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 là:
\[59,59 + 76,1 + 87,64 = 223,33\] (tỷ USD).
Vậy tổng trị giá nhập khẩu hàng hóa của nước ta trong quý I của giai đoạn 2020 – 2022 là \[223,33\] tỷ USD.
c) Ta thấy trị giá xuất khẩu hàng hóa của quý I/2021 lớn hơn trị giá xuất khẩu hàng hóa của quý I/2020 (vì \[78,56 > 63,4\]).
Do đó, giá trị xuất khẩu hàng hóa của nước ta trong quý I năm 2021 tăng so với quý I năm 2020.
Tỉ số phần trăm trị giá xuất khẩu hàng hóa của nước ta trong quý I năm 2020 và quý I năm 2021 là: \(\frac{{78,56}}{{63,4}} \cdot 100\% \approx 123,9\% \).
Số phần trăm giá trị xuất khẩu hàng hóa của nước ta trong quý I năm 2021 tăng so với quý I năm 2020 là khoảng: \[123,9\% - 100\% = 23,9\% \].
Vậy giá trị xuất khẩu hàng hóa của nước ta trong quý I năm 2021 tăng khoảng \[19,3\% \] so với quý I năm 2020.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) \(4{x^2} - 6x\) \( = 2x\left( {2x - 3} \right).\) |
b) \(25{\left( {x - y} \right)^2} - 16{\left( {x + y} \right)^2}\) \( = {\left[ {5\left( {x - y} \right)} \right]^2} - {\left[ {4\left( {x + y} \right)} \right]^2}\) \[ = {\left( {5x - 5y} \right)^2} - {\left( {4x + 4y} \right)^2}\] \[ = \left[ {5x - 5y - \left( {4x + 4y} \right)} \right]\left[ {5x - 5y + \left( {4x + 4y} \right)} \right]\] \[ = \left( {5x - 5y - 4x - 4y} \right)\left( {5x - 5y + 4x + 4y} \right)\] \[ = \left( {x - 9y} \right)\left( {9x - y} \right).\] |
Lời giải
Hướng dẫn giải
1. a) Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\)
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\)
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;cm}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
b) Thể tích của hình chóp tam giác đều \(S.ABC\) là:
Vậy thể tích của hình chóp tam giác đều \(S.ABC\) khoảng \[20,94\,\,{\rm{\;c}}{{\rm{m}}^3}.\]
2.

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)
Mà \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên
\(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)
Do đó \[DG = BF = FG,{\rm{ }}EG = CH = HG.\]
Suy ra, \[G\] là trung điểm của \[FD,{\rm{ }}G\] là trung điểm của \[EH.\]
Tứ giác \[EFHD\] có hai đường chéo \[EH\] và \(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.
b) Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\] và \[EH \bot DF.\]
Suy ra \[EG = DG,{\rm{ }}BG = CG\] và \[BD \bot CE.\]
⦁ Xét \(\Delta BEG\) và \[\Delta CDG\] có:
\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]
Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).
Suy ra \[BE = CD\] (hai cạnh tương ứng) (1)
Mà \[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC\]
Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD\,\,\,\,\,\,\left( 2 \right)\]
Từ (1) và (2) suy ra \[AB = AC.\]
⦁ Dễ thấy, nếu \[AB = AC\] và \[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.
Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
