Câu hỏi:

21/11/2025 9 Lưu

(3,5 điểm)

1) Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính:

a) Diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\)

b) Thể tích của hình chóp \(S.ABC,\) biết chiều cao \(SO\) của hình chóp là \(5,8{\rm{\;cm}}.\)

Cho hình chóp tam giác (ảnh 1)

(Làm tròn các kết quả đến chữ số thập phân thứ hai).

2. Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]

a) Tứ giác \[EFHD\] là hình gì? Vì sao?

b) Tìm điều kiện của tam giác \[ABC\] để tứ giác \[EFHD\] là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1. a) Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\)\(A{C^2} = A{I^2} + C{I^2}\)

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\)

Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;cm}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

 Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

 Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

b) Thể tích của hình chóp tam giác đều \(S.ABC\) là:

 V=13SOSđáy135,810,8320,94   cm3.

Vậy thể tích của hình chóp tam giác đều \(S.ABC\) khoảng \[20,94\,\,{\rm{\;c}}{{\rm{m}}^3}.\]

2.

Cho hình chóp tam giác (ảnh 2)

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)

\[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên

\(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)

Do đó \[DG = BF = FG,{\rm{ }}EG = CH = HG.\]

Suy ra, \[G\] là trung điểm của \[FD,{\rm{ }}G\] là trung điểm của \[EH.\]

Tứ giác \[EFHD\] có hai đường chéo \[EH\]\(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.

b) Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\]\[EH \bot DF.\]

Suy ra \[EG = DG,{\rm{ }}BG = CG\]\[BD \bot CE.\]

Xét \(\Delta BEG\)\[\Delta CDG\] có:

\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]

Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).

Suy ra \[BE = CD\] (hai cạnh tương ứng) (1)

\[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC\]

Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD\,\,\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra \[AB = AC.\]

Dễ thấy, nếu \[AB = AC\]\[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.

Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \(4{x^2} - 6x\)

\( = 2x\left( {2x - 3} \right).\)

b) \(25{\left( {x - y} \right)^2} - 16{\left( {x + y} \right)^2}\)

\( = {\left[ {5\left( {x - y} \right)} \right]^2} - {\left[ {4\left( {x + y} \right)} \right]^2}\)

\[ = {\left( {5x - 5y} \right)^2} - {\left( {4x + 4y} \right)^2}\]

\[ = \left[ {5x - 5y - \left( {4x + 4y} \right)} \right]\left[ {5x - 5y + \left( {4x + 4y} \right)} \right]\]

\[ = \left( {5x - 5y - 4x - 4y} \right)\left( {5x - 5y + 4x + 4y} \right)\]

\[ = \left( {x - 9y} \right)\left( {9x - y} \right).\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hai đơn thức thu gọn là \(A = \left( {0,3 + \pi } \right){x^2}y;\) \(D = \left( {\sqrt 2 + 1} \right)x{y^2}z\) vì hai đơn thức này là dạng tích của một số với những biến, mỗi biến chỉ xuất hiện một lần và đã được nâng lên lũy thừa với số mũ nguyên dương.

Câu 3

A. \(x = 4.\)             
B. \(x = - 4.\)          
C. \(x = - 8.\)   
D. \(x = 8.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({S_{xq}} = \frac{1}{2}pd.\)            
B. \({S_{xq}} = \frac{1}{3}pd.\)              
C. \({S_{xq}} = pd.\) 
D. \({S_{xq}} = 2pd.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Kết quả bơi 50 m tự do của 10 vận động viên là số liệu liên tục..
B. Số môn thể thao mà các bạn tổ 1 của lớp 8B biết chơi là số liệu liên tục.
C. Chiều cao của các bạn học sinh nữ lớp 8A là số liệu rời rạc
D. Nhiệt độ các ngày trong tuần ở Hà Nội là số liệu rời rạc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP