PHẦN II. TỰ LUẬN (8,0 điểm)
(1,0 điểm) Tìm \(x,\) biết:
a) \[2{x^2} - 8x = 0.\]
b) \[{x^3} - 6{x^2} + 9x = 0.\]
PHẦN II. TỰ LUẬN (8,0 điểm)
(1,0 điểm) Tìm \(x,\) biết:
a) \[2{x^2} - 8x = 0.\]
b) \[{x^3} - 6{x^2} + 9x = 0.\]
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) \[2{x^2} - 8x = 0\] \[2x\left( {x - 4} \right) = 0\] Suy ra \[2x = 0\] hoặc \[x - 4 = 0\] \[x = 0\] hoặc \[x = 4\] Vậy \(x \in \left\{ {0;\,\,4} \right\}\). b) \({\left( {x + 2} \right)^2} - x\left( {x - 1} \right) = 10\) \({x^2} + 4x + 4 - {x^2} + x = 10\) \[\left( {{x^2} - {x^2}} \right) + \left( {4x + x} \right) = 10 - 4\] \(5x = 6\) \(x = \frac{6}{5}\) Vậy\(x = \frac{6}{5}\). |
c) \[{x^3} - 6{x^2} + 9x = 0\] \[x\left( {{x^2} - 6x + 9} \right) = 0\] \[x{\left( {x - 3} \right)^2} = 0\] Suy ra \[x = 0\] hoặc \[{\left( {x - 3} \right)^2} = 0{\rm{ }}\] \[x = 0\] hoặc \[x - 3 = 0{\rm{ }}\] \[x = 0\] hoặc \[x = 3\] Vậy \(x \in \left\{ {0\,;\,\,3} \right\}\). |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Theo đề bài: \({x^2} + \frac{8}{{{x^2}}} + \frac{{{y^2}}}{8} = 8\) suy ra \(2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = 16\)
Ta có: \[2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = \left( {{x^2} + \frac{{16}}{{{x^2}}} - 8} \right) + \left( {{x^2} + \frac{{{y^2}}}{4} - xy} \right) + xy + 8\]
\[ = {\left( {x - \frac{4}{x}} \right)^2} + {\left( {x - \frac{y}{2}} \right)^2} + xy + 8\].
Vì \[{\left( {x - \frac{4}{x}} \right)^2} \ge 0\,;\,\,{\left( {x - \frac{y}{2}} \right)^2} \ge 0\] nên \[xy + 8 \le 16\] hay \[xy \le 8\].
Suy ra \(A = xy + 2023 \le 8 + 2023 = 2031\).
Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x - \frac{4}{x}} \right)^2} = 0\\{\left( {x - \frac{y}{2}} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - \frac{4}{x} = 0\\x - \frac{y}{2} = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}{x^2} = 4\\y = 2x\end{array} \right.\).
Khi đó, \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).
Vậy giá trị lớn nhất của biểu thức \(A\) là 2031 khi \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).
Lời giải
Hướng dẫn giải
a) Ta có bảng thống kê sản lượng thủy sản nước ta qua các năm 2010; 2014; 2016; 2018; 2020 như sau:
|
Năm |
2010 |
2014 |
2016 |
2018 |
2020 |
|
Sản lượng (nghìn tấn) |
\[5\,\,204,5\] |
\[6\,\,420,5\] |
\[6\,\,924,4\] |
\[7\,\,885,9\] |
\[8\,\,635,7\] |
b) Dựa vào thống kê, ta có:
- Năm 2020 sản lượng thủy sản nước ta cao nhất (\[8\,\,635,7\] nghìn tấn).
- Năm 2010 sản lượng thủy sản nước ta thấp nhất (\[5\,\,204,5\] nghìn tấn).
c) Năm 2020 sản lượng thủy sản nước ta nhiều hơn năm 2014 là:
\(8\,\,635,7 - 6\,\,420,5 = 2\,\,215,2\) (nghìn tấn)
Năm 2020 sản lượng thủy sản nước ta gấp số lần so với năm 2014 là:
\(8\,\,635,7:6\,\,420,5 = 1,3\) (lần)
Vậy nhận định của bài báo đó là chính xác.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
