Số học sinh khối 6 của một trường THCS khi xếp hàng 10 em thì thừa 8 em, xếp hàng 12 em thì thừa 10 em, khi xếp hàng 15 em thì thừa 13 em nhưng khi xếp hàng 17 thì vừa đủ. Tính số học sinh khối 6 của trường biết số học sinh là một số tự nhiên có 3 chữ số nhỏ hơn 250.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 6 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi số học sinh của trường THCS đó là \(a\) (học sinh) \(\left( {a \in \mathbb{N},100 \le a < 250} \right)\).
Do khi xếp hàng 10 em thì thừa 8 em nên \(a\) chia 10 dư 8, hay \(\left( {a + 2} \right) \vdots 10\).
Khi xếp hàng 12 em thì thừa 10 em nên \(a\) chia 12 dư 10, hay \(\left( {a + 2} \right) \vdots 12\).
Khi xếp hàng 15 em thì thừa 13 em nên \(a\) chia 15 dư 13, hay \(\left( {a + 2} \right) \vdots 15\).
Từ đó suy ra \(a + 2 \in BC\left( {10,12,15} \right)\).
Ta có: \(10 = 2.5\); \(12 = {2^2}.3\); \(15 = 3.5\).
Do đó \(BCNN\left( {10,12,15} \right) = {2^2}.3.5 = 60\).
Khi đó \[a + 2 \in BC\left( {10,12,15} \right) = B\left( {60} \right) = \left\{ {0;60;120;180;240;300;360;...} \right\}\].
Mà \(100 \le a < 250\) nên \(102 \le a + 2 \le 252\), suy ra \(a + 2 \in \left\{ {120;180;240} \right\}\)
Do đó \(a \in \left\{ {118;178;238} \right\}\)
Mặt khác khi số học sinh của trường xếp hàng 17 thì vừa đủ nên \(a \vdots 17\)
Xét 3 trường hợp ở trên ta có \(a = 238\) thỏa mãn.
Vậy trường THCS đó có 238 học sinh.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Tập hợp số tự nhiên không chứa các phần tử nhỏ hơn 0. Do đó ta chọn phương án D.
Lời giải
a) \(12 + \left( {7 - x} \right) = 18\)
\(7 - x = 18 - 12\)
\(7 - x = 6\)
\(x = 7 - 6\)
\(x = 1\)
Vậy \(x = 1\).
c) \({2^{x + 3}}{.2^2} = {2^2}.3 + 52\)
\({2^{x + 5}} = 4.3 + 52\)
\({2^{x + 5}} = 64 = {2^6}\)
Suy ra \(x + 5 = 6\)
\(x = 1\)
Vậy \(x = 1\).b) \( - 152 - \left( {3x + 1} \right) = 54\)
\[3x + 1 = - 152 - 54\]
\[3x + 1 = - 206\]
\(3x = - 207\)
\(x = - 69\)
Vậy \(x = - 69\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(x\) chia hết cho 4;
B. \(x\) chia hết cho 2;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
