Câu hỏi:

02/12/2025 7 Lưu

Cho tam giác \(ABC\), gọi \(M\) là trung điểm của \(BC\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(MA = MD\). Chứng minh rằng:

a) \(\Delta ABM = \Delta DCM\);

b) \(AB\,{\rm{//}}\,CD\);                                                        

c) \(AM < \frac{{AB + AC}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Xét \(\Delta ABM\) và \(\Delta DCM\) có

\(MA = MD\) (giả thiết)

\(MB = MC\) (vì \[M\] là trung điểm)

\(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh)

Do đó \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ câu a: \(\Delta ABM = \Delta DCM\).

Suy ra \(\widehat {BAM} = \widehat {MDC}\).

Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau).

c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).

Cho tam giác \(ABC\), gọi \(M\ (ảnh 1)

Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)

Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).

Vậy \(AM < \frac{{AB + AC}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Tỉ lệ học sinh xếp loại Đạt của khối 7 là: \(100 - 46 - 28 - 2 = 24\left( \% \right)\)

b) Số học sinh xếp loại Giỏi gấp số lần học sinh xếp loại Yếu là: \(28:2 = 14\) (lần).

c) Tổng số học sinh xếp loại Khá, Giới chiếm số phần trăm so với học sinh khối 7 là: \(46 + 28 = 74\% \)

d) Số học sinh khối 7 xếp loại Giỏi là: \(28\% .350 = 98\) (học sinh).