Cho \[\Delta ABC\] vuông tại \(A\), kẻ \(AH \bot BC\) \(\left( {H \in BC} \right)\). Tia phân giác của \(\widehat {BAH}\) cắt \(BC\) ở \(D\).
a) Chứng minh \(\Delta ADC\,\) cân.
b) Lấy điểm \[E\] trên cạnh BC sao cho \(BE = BA\). Kẻ \[DI \bot AB\], \(EJ \bot AC\) \(\left( {I \in AB,\,\,J \in AC} \right)\). Chứng minh \(DE = DI + EJ\).
c) Tính góc \(DAE\).
d) \(IJ\) cắt \(AD\) tại \(K\). Chứng minh \[BK\] là tia phân giác của \(\widehat {ABC}\).
Cho \[\Delta ABC\] vuông tại \(A\), kẻ \(AH \bot BC\) \(\left( {H \in BC} \right)\). Tia phân giác của \(\widehat {BAH}\) cắt \(BC\) ở \(D\).
a) Chứng minh \(\Delta ADC\,\) cân.
b) Lấy điểm \[E\] trên cạnh BC sao cho \(BE = BA\). Kẻ \[DI \bot AB\], \(EJ \bot AC\) \(\left( {I \in AB,\,\,J \in AC} \right)\). Chứng minh \(DE = DI + EJ\).
c) Tính góc \(DAE\).
d) \(IJ\) cắt \(AD\) tại \(K\). Chứng minh \[BK\] là tia phân giác của \(\widehat {ABC}\).
Quảng cáo
Trả lời:
![Cho \[\Delta ABC\] vuông tại \( (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/43-1764649733.png)
Vì \(AD\) là tia phân giác của \(\widehat {BAH}\) nên: \(\widehat {BAD} = \widehat {DAH} = \frac{1}{2}\widehat {BAH}\).
Ta có: \(\widehat {DAC} = \widehat {BAC} - \widehat {BAD} = 90^\circ - \widehat {BAD}\).
Xét \(\Delta AHD\) có: \(\widehat {ADC} = 90^\circ - \widehat {DAH} = 90^\circ - \widehat {BAD}\).
Do đó: \(\widehat {ADC} = \widehat {DAC}\).
Xét \(\Delta ACD\) có \(\widehat {ADC} = \widehat {DAC}\) (chứng minh trên)
Do đó: \(\Delta ADC\,\) cân tại \[C\].
b)
![Cho \[\Delta ABC\] vuông tại \( (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/12/44-1764649752.png)
Xét \(\Delta ADI\) và \(\Delta AHD\) có:
\(\widehat {AID} = \widehat {AHD} = 90^\circ \).
\(\widehat {IAD} = \widehat {HAD}\) (chứng minh trên)
\(AD\) cạnh chung
Do đó: \(\Delta ADI\) = \(\Delta AHD\) (cạnh huyền – góc nhọn)
Suy ra: \(DI = DH\) (2 cạnh tương ứng) (*)
Xét \(\Delta BAE\) có \(BE = BA\) (giả thiết) suy ra \(\Delta BAE\) cân tại \[B\] do đó \(\widehat {BAE} = \widehat {BEA}\) (2 góc ở đáy) (1)
Ta có: \(EJ \bot AC\); \(BA \bot AC\) (\(\Delta ABC\) vuông tại \(A\)) suy ra \(EJ\parallel BA\) nên \(\widehat {JEA} = \widehat {EAB}\) (so le trong) (2)
Từ (1) và (2) ta có: \(\widehat {JEA} = \widehat {BEA}\) hay \(\widehat {JEA} = \widehat {HEA}\).
Xét \(\Delta AHE\) và \(\Delta AJE\) có:
\(\widehat {AHE} = \widehat {AJE} = 90^\circ \).
\(\widehat {JEA} = \widehat {HEA}\) (chứng minh trên)
\(AE\) cạnh chung
Do đó: \(\Delta AHE\) = \(\Delta AJE\) (cạnh huyền- góc nhọn)
Suy ra: \(EH = EJ\) (2 cạnh tương ứng) (**)
Ta có: \(DE = DH + HE\), kết hợp với (*), (**) ta được: \(DE = DI + EJ\).
c) Vì \(\Delta AHE\) = \(\Delta AJE\) (chứng minh trên) nên \(\widehat {HAE} = \widehat {JAE}\) (2 góc tương ứng)
Ta có: \(\widehat {DAE} = \widehat {DAH} + \widehat {HAE} = \frac{1}{2}\widehat {BAH} + \frac{1}{2}\widehat {HAC} = \frac{1}{2}.\left( {\widehat {BAH} + \widehat {HAC}} \right) = \frac{1}{2}.90^\circ = 45^\circ \).
Vậy \(\widehat {DAE} = 45^\circ \).
d)
![Cho \[\Delta ABC\] vuông tại \( (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/12/45-1764649763.png)
Ta có: \(\Delta ADI\) = \(\Delta ADH\) (câu b) nên \(AI = AH\).
\(\Delta AHE\) = \(\Delta AJE\) (câu b) nên \(AH = AJ\).
Do đó \(AI = AJ\).
Xét \(\Delta AIJ\) có \(\widehat {IAJ} = 90^\circ ;\,\,AI = AJ\) do đó \(\Delta AIJ\) vuông cân tại \(A\) suy ra \(\widehat {AIJ} = 45^\circ \) (3)
Xét \(\Delta AIK\) và \(\Delta AHK\) có:
\(AI = AH\).
\(\widehat {IAK} = \widehat {KAH}\).
\(AK\) :cạnh chung
Suy ra \(\Delta AIK\) = \(\Delta AHK\) (c.g.c)
Có \(\Delta AIK\) = \(\Delta AHK\) (chứng minh trên) nên \(\widehat {AIK} = \widehat {AHK}\) (2 góc tương ứng) (4)
Từ (3), (4) ta có \(\widehat {AHK} = 45^\circ \).
Do đó: \(\widehat {AHK} = \frac{1}{2}\widehat {AHD}\) do đó \(HK\) là tia phân giác của \(\widehat {AHD}\).
Xét \(\Delta AHB\) có: \(HK\) là tia phân giác của \(\widehat {AHD}\);
\(AD\) là tia phân giác của \(\widehat {BAH}\);
\(AD\) cắt \(HK\) tại \(D\).
Suy ra \[BK\] là tia phân giác của góc \(ABC\) nên \(\widehat {ABK} = \widehat {EBK}\).
Do đó \[BK\] là tia phân giác của góc \(ABC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho \[\Delta ABC\] có \[AB = A (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/41-1764649667.png)
a) Xét \(\Delta ABM\) và \(\Delta DCM\), có:
\[AM = MD\] (gt)
\[\widehat {BMA} = \widehat {CMD}\] (đối đỉnh)
\[BM = MC\] (gt)
Do đó, \(\Delta ABM = \Delta DCM\) (c.g.c)
b) Từ phần a, có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong, suy ra \(AB\parallel DC\).
c) Xét \[\Delta ABC\] có \[AB = AC\] nên \[\Delta ABC\] cân tại \[A\].
Mà có \[M\] là trung điểm của \[BC\] nên \[AM\] là đường cao của \[\Delta ABC\].
Suy ra \(AM \bot BC\).
d) Từ a) có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(AB = DC\) (2 cạnh tương ứng).
Mà \[AB = AC\] nên \[AC = CD\], suy ra \(\Delta CAD\) cân tại \(C\).
Suy ra \(\widehat {ADC} = \widehat {CAD} = 45^\circ \).
Có \(\widehat {BAC} = 2\widehat {CAD} = 90^\circ \) (\[AM\] vừa là đường cao, vừa là đường phân giác \(\widehat {BAC}\)).
Lúc này \[\Delta ABC\] là tam giác vuông cân tại \[A\].
Vậy để góc \(\widehat {ADC} = 45^\circ \) thì \[\Delta ABC\] là tam giác vuông cân tại \[A\].
Lời giải
![Cho tam giác \[ABC\] nhọn. Gọi \[M\] là t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/37-1764649550.png)
a) Xét \[\Delta AMB\] và \[\Delta CMD\] có:
\[MD = MB\] (giả thiết)
\[\widehat {AMB} = \widehat {CMD}\] (2 góc đối đỉnh)
\[MA = MC\] (giả thiết)
Suy ra \[\Delta AMB = \Delta CMD\] (c.g.c)
b) Xét \[\Delta AMD\] và \[\Delta CMB\] có: \[MD = MB\] (giả thiết), \[\widehat {AMD} = \widehat {CMB}\] (đối đỉnh), \[MA = MC\] (giả thiết)
Vậy \[\Delta AMD = \Delta CMB\] (c.g.c) suy ra \[\widehat {ADM} = \widehat {CBM}\] (hai góc tương ứng), mà hai góc này lại ở vị trí sole trong nên \[AD\,{\rm{//}}\,BC\] (dấu hiệu nhận biết)
c) Ta có: \[\Delta AMB = \Delta CMD\] (chứng minh trên) suy ra \[\widehat {MAB} = \widehat {MCD}\] (hai góc tương ứng) mà hai góc này lại ở vị trí sole trong nên \[AB\,{\rm{//}}\,\,CD\] (1)
Ta lại có: \[MH \bot AB\] (giả thiết) (2). Từ (1) và (2) suy ra \[MH \bot CD\] và \[MK \bot DC\] (giả thiết) suy ra 3 điểm \[H,M,K\] thẳng hàng (định lý)
Xét \[\Delta AMH\] và \[\Delta CMK\] có:
\[\widehat {AHM} = \widehat {MKC} = 90^\circ \] (giả thiết)
\[AM = MC\] (giả thiết)
\[\widehat {AMH} = \widehat {CMK}\] (đối đỉnh)
Vậy \[\Delta AMH = \Delta CMK\] (ch – gn) suy ra \[AM = MC\] hay \[M\] là trung điểm \[HK\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.