Câu hỏi:

03/12/2025 5 Lưu

Ba người cùng nhau mua một rổ trứng, người thứ nhất mua \(\frac{1}{2}\) số trứng mà hai người kia mua. Số trứng người thứ hai mua bằng \(\frac{3}{5}\) số trứng người thứ nhất mua. Người thứ ba mua 14 quả. Tính số trứng ban đầu trong rổ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Người thứ nhất mua \(\frac{1}{2}\) số trứng mà hai người kia mua.

Do đó, người thứ nhất mua \(\frac{1}{3}\) số trứng của ba người.

Người thứ hai mua \(\frac{1}{3} \cdot \frac{3}{5} = \frac{1}{5}\) (số trứng).

Người thứ ba mua ứng với \(1 - \frac{1}{3} - \frac{1}{5} = \frac{7}{{15}}\) (số trứng).

Số quả trứng ban đầu trong rổ là: \(14:\frac{7}{{15}} = 30\) (quả).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\) là một điểm thuộc đoạn \[EF.\] Biết rằng \[EF = 10{\rm{\;cm}}\] và \[MF = 5{\rm{\;cm}}.\]Hãy so sánh hai đoạn thẳng \[EM\] và\[MF.\] (ảnh 1)

\(M\) là một điểm thuộc đoạn \[EF,\] nên ba điểm \(E,\,\,M,\,\,F\) thẳng hàng và điểm \(M\)nằm giữa hai điểm \[E,\,\,F.\]

Do đó \(FE = FM + ME\)

Suy ra \(ME = FE - FM = 10 - 5 = 5{\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)

Vậy \(ME = MF = 5{\rm{\;cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP