Câu hỏi:

03/12/2025 26 Lưu

Vẽ đoạn thẳng \[MN = 6{\rm{\;cm}}{\rm{.}}\] Lấy điểm \[A\] nằm trên đoạn thẳng \[MN\] sao cho \[MA = 4{\rm{\;cm}}{\rm{.}}\]

a) Tính độ dài đoạn thẳng \[AN.\]

b) Lấy điểm \[I\] là trung điểm của đoạn thẳng \[MA.\] So sánh độ dài đoạn \[AI\]\[AN.\] Điểm \[A\] có là trung điểm của đoạn thẳng \[IN\] không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vẽ đoạn thẳng \[MN = 6{\rm{\;cm}} (ảnh 1)

a) Vì điểm \(A\) nằm giữa hai điểm \(M\)\(N\) nên ta có:

\(MA + AN = MN\)

Suy ra \(AN = MN - MA = 6 - 4 = 2{\rm{\;}}\left( {{\rm{cm}}} \right).\)

b) Vì điểm \[I\] là trung điểm của đoạn thẳng \(MA\) nên điểm \(I\) nằm giũa hai điểm \(M\)\(A\)\(IA = \frac{1}{2}MA = \frac{1}{2} \cdot 4 = 2{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Vì điểm \(A\) nằm giữa hai điểm \(M\)\(N\) nên \(M,\,\,N\) nằm khác phía đối với điểm \(A.\)

Vì điểm \(I\) nằm giũa hai điểm \(M\)\(A\) nên \(M,\,\,I\) nằm cùng phía đối với điểm \(A.\)

Từ đó ta có điểm \(I\)\(N\) nằm khác phía đối với điểm \(A.\)

Do đó điểm \(A\) nằm giữa hai điểm \(I,\,\,N.\)

Lại có \(IA = AN = 2{\rm{\;cm}}.\)

Suy ra điểm \(A\) là trung điểm của đoạn thẳng \[IN.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]

Khi đó:

\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} +  \ldots  + \frac{1}{{2025}}\)

\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) +  \ldots  + \left( {\frac{1}{{2025}} + 1} \right)\)

\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)

\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)

\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)

Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)

Vậy \(\frac{B}{A} = 2026.\)

Lời giải

Hướng dẫn giải:

a) Với \(n \ne 1,\) ta có \(\frac{{n + 13}}{{n - 1}} = \frac{{n - 1 + 14}}{{n - 1}} = 1 + \frac{{14}}{{n - 1}}.\)

Với \(n \in \mathbb{Z},\) để \[\frac{{n + 13}}{{n - 1}}\] tối giản thì \[\frac{{14}}{{n - 1}}\] phải là tối giản, tức là \[14\]\(n - 1\) là hai số nguyên tố cùng nhau.

Ngoài các ước là \[1\]\[14,\] thì \[14\] còn có các ước \[2;\,\,7.\]

Do đó để \(\left( {14,n - 1} \right) = 1\) thì \(n - 1\) không chia hết cho \[2\]\(n - 1\) không chia hết cho \[7.\]

Tức là \(n - 1 \ne 2k\) (với \(k \in \mathbb{Z})\)\(n - 1 \ne 7q\) (với \(q \in \mathbb{Z})\)

Vậy với \(n \ne 2k + 1\)\(n \ne 7q + 1\) \[\left( {k,\,q \in \mathbb{Z}} \right)\] thì \(\frac{{n + 13}}{{n - 1}}\) là phân số tối giản.

b) Giả sử \(d\) là ước chung nguyên tố của \[\left( {18n + 3} \right)\]\[\left( {21n + 7} \right).\]

Suy ra \(\left\{ \begin{array}{l}\left( {18n + 3} \right) \vdots d\\\left( {21n + 7} \right) \vdots d\end{array} \right.\) nên \(\left\{ \begin{array}{l}7 \cdot \left( {18n + 3} \right) \vdots d\\6 \cdot \left( {21n + 7} \right) \vdots d\end{array} \right.\) hay \(\left\{ \begin{array}{l}\left( {126n + 21} \right) \vdots d\\\left( {126n + 42} \right) \vdots d\end{array} \right.\)

Do đó \(\left( {126n + 42 - 126n - 21} \right) \vdots d\) hay \(21 \vdots d\) nên \(d \in \left\{ {3;7} \right\}.\)

Với \(d = 3\) ta có \(\left( {21n + 7} \right) \vdots 3\) nên \(7 \vdots 3\) (điều này là vô lí).

Với \[d = 7\] ta có \[\left( {18n + 3} \right) \vdots 7\] nên \[\left( {18n + 3n - 3n + 3} \right) \vdots 7\] hay \[\left( {21n - 3n + 3} \right) \vdots 7\]

Tức là \[\left( {3 - 3n} \right) \vdots 7\] hay \[3\left( {n - 1} \right) \vdots 7\] nên \(\left( {n - 1} \right) \vdots 7\)

Khi đó \[n - 1 = 7k\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\] hay \[n = 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\]

Vậy phân số \(\frac{{18n + 3}}{{21n + 7}}\) là tối giản khi \(d \ne 7\) hay \[n \ne 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP