Câu hỏi:

03/12/2025 7 Lưu

Tìm các giá trị nguyên của \(n\) để các biểu thức sau có giá trị nguyên:

a) \[\frac{{n - 1}}{{n + 1}}.\]                                     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Với \(n \ne - 1\) ta có: \[\frac{{n - 1}}{{n + 1}} = \frac{{n + 1 - 2}}{{n + 1}} = 1 - \frac{2}{{n + 1}}\]

Với \(n \in \mathbb{Z},\) để biểu thức \[\frac{{n - 1}}{{n + 1}}\] có giá trị nguyên thì \(2 \vdots \left( {n + 1} \right)\)

Hay \(n + 1 \in \)Ư\(\left( 2 \right) = \left\{ {1; - 1;2; - 2} \right\}.\)

Ta có bảng sau:

\(n + 1\)

\(1\)

\( - 1\)

\[2\]

\[ - 2\]

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(0\)

\( - 2\)

\[1\]

\[ - 3\]

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(n \in \left\{ { - 3;\,\, - 2;\,\,0;\,\,1} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]

Khi đó:

\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} +  \ldots  + \frac{1}{{2025}}\)

\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) +  \ldots  + \left( {\frac{1}{{2025}} + 1} \right)\)

\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)

\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)

\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)

Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)

Vậy \(\frac{B}{A} = 2026.\)

Lời giải

Hướng dẫn giải:

Coi toàn bộ công việc là 1 đơn vị.

Người thứ nhất làm xong công việc trong 4 giờ. Suy ra trong 1 giờ làm được \[\frac{1}{4}\] công việc.

Người thứ hai làm xong công việc trong 7 giờ. Suy ra trong 1 giờ làm được \(\frac{1}{7}\) công việc.

Vậy trong 1 giờ, cả hai cùng làm thì được số phần công việc là: \[\frac{1}{4} + \frac{1}{7} = \frac{{11}}{{28}}\] công việc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP