Câu hỏi:

03/12/2025 7 Lưu

Tìm các giá trị nguyên của \(n\) để các biểu thức sau có giá trị nguyên:

b) \(\frac{{2n - 1}}{{3 - n}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
b) 2n13n.

b) Với \(n \ne 3,\) ta có: \(\frac{{2n - 1}}{{3 - n}} = \frac{{2n - 6 + 5}}{{3 - n}} = \frac{{ - 2\left( {3 - n} \right) + 5}}{{3 - n}} = - 2 + \frac{5}{{3 - n}}.\)

Với \(n \in \mathbb{Z},\) để biểu thức \(\frac{{2n - 1}}{{3 - n}}\) có giá trị nguyên thì \(5 \vdots 3 - n\)

Hay \(3 - n \in \)Ư\(\left( 5 \right) = \left\{ { - 5;\,\, - 1;\,\,1;\,\,5} \right\}\)

Ta có bảng sau:

\(3 - n\)

\(1\)

\( - 1\)

\[5\]

\[ - 5\]

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(2\)

\(4\)

\[ - 2\]

\[8\]

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(n \in \left\{ { - 2;\,\,2;\,\,4;\,\,8} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]

Khi đó:

\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} +  \ldots  + \frac{1}{{2025}}\)

\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) +  \ldots  + \left( {\frac{1}{{2025}} + 1} \right)\)

\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)

\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)

\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)

Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)

Vậy \(\frac{B}{A} = 2026.\)

Lời giải

Hướng dẫn giải:

Coi toàn bộ công việc là 1 đơn vị.

Người thứ nhất làm xong công việc trong 4 giờ. Suy ra trong 1 giờ làm được \[\frac{1}{4}\] công việc.

Người thứ hai làm xong công việc trong 7 giờ. Suy ra trong 1 giờ làm được \(\frac{1}{7}\) công việc.

Vậy trong 1 giờ, cả hai cùng làm thì được số phần công việc là: \[\frac{1}{4} + \frac{1}{7} = \frac{{11}}{{28}}\] công việc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP