Câu hỏi:

03/12/2025 84 Lưu

Tìm các số nguyên \(n\) để các phân số sau tối giản:

a) \[\frac{{n + 13}}{{n - 1}}.\]     

b) \(\frac{{18n + 3}}{{21n + 7}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Với \(n \ne 1,\) ta có \(\frac{{n + 13}}{{n - 1}} = \frac{{n - 1 + 14}}{{n - 1}} = 1 + \frac{{14}}{{n - 1}}.\)

Với \(n \in \mathbb{Z},\) để \[\frac{{n + 13}}{{n - 1}}\] tối giản thì \[\frac{{14}}{{n - 1}}\] phải là tối giản, tức là \[14\]\(n - 1\) là hai số nguyên tố cùng nhau.

Ngoài các ước là \[1\]\[14,\] thì \[14\] còn có các ước \[2;\,\,7.\]

Do đó để \(\left( {14,n - 1} \right) = 1\) thì \(n - 1\) không chia hết cho \[2\]\(n - 1\) không chia hết cho \[7.\]

Tức là \(n - 1 \ne 2k\) (với \(k \in \mathbb{Z})\)\(n - 1 \ne 7q\) (với \(q \in \mathbb{Z})\)

Vậy với \(n \ne 2k + 1\)\(n \ne 7q + 1\) \[\left( {k,\,q \in \mathbb{Z}} \right)\] thì \(\frac{{n + 13}}{{n - 1}}\) là phân số tối giản.

b) Giả sử \(d\) là ước chung nguyên tố của \[\left( {18n + 3} \right)\]\[\left( {21n + 7} \right).\]

Suy ra \(\left\{ \begin{array}{l}\left( {18n + 3} \right) \vdots d\\\left( {21n + 7} \right) \vdots d\end{array} \right.\) nên \(\left\{ \begin{array}{l}7 \cdot \left( {18n + 3} \right) \vdots d\\6 \cdot \left( {21n + 7} \right) \vdots d\end{array} \right.\) hay \(\left\{ \begin{array}{l}\left( {126n + 21} \right) \vdots d\\\left( {126n + 42} \right) \vdots d\end{array} \right.\)

Do đó \(\left( {126n + 42 - 126n - 21} \right) \vdots d\) hay \(21 \vdots d\) nên \(d \in \left\{ {3;7} \right\}.\)

Với \(d = 3\) ta có \(\left( {21n + 7} \right) \vdots 3\) nên \(7 \vdots 3\) (điều này là vô lí).

Với \[d = 7\] ta có \[\left( {18n + 3} \right) \vdots 7\] nên \[\left( {18n + 3n - 3n + 3} \right) \vdots 7\] hay \[\left( {21n - 3n + 3} \right) \vdots 7\]

Tức là \[\left( {3 - 3n} \right) \vdots 7\] hay \[3\left( {n - 1} \right) \vdots 7\] nên \(\left( {n - 1} \right) \vdots 7\)

Khi đó \[n - 1 = 7k\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\] hay \[n = 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\]

Vậy phân số \(\frac{{18n + 3}}{{21n + 7}}\) là tối giản khi \(d \ne 7\) hay \[n \ne 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Chỉ với hai lần cưa, người nông dân cần cưa thanh vàng thành ba phần: \(\frac{1}{7}\), \(\frac{2}{7}\)\(\frac{4}{7}\).

Và khi đó, người nông dân sẽ trả lương mỗi ngày cho thợ như sau:

Thứ hai: Trả \(\frac{1}{7}\) thanh vàng.

Thứ ba: Trả \(\frac{2}{7}\) thanh vàng và lấy lại \(\frac{1}{7}\) thanh vàng.

Thứ tư: Đưa lại \(\frac{1}{7}\) thanh vàng cho người thợ.

Thứ năm: Đưa lại \(\frac{4}{7}\) thanh vàng và lấy lại \(\frac{1}{7}\)\(\frac{2}{7}\) thanh vàng.

Thứ sáu: Đưa \(\frac{1}{7}\) thanh vàng.

Thứ bảy: Đưa \(\frac{2}{7}\) thanh vàng và lấy lại \(\frac{1}{7}\) thanh vàng từ thợ.

Chủ nhật: Trả nội \(\frac{1}{7}\) thanh vàng còn lại.

Lời giải

Hướng dẫn giải:

a) Các cặp đường thẳng song song: \(AB\)\(DE.\)

b) Các cặp đường thẳng cắt nhau là

\(AE\)\(BD.\) Giao điểm là điểm \(C.\)

\(AC\)\(AB.\) Giao điểm là điểm \(A.\)

\(AB\)\(BC.\) Giao điểm là điểm \(B.\)

\(CD\)\(DE.\) Giao điểm là điểm \(D.\)

\(CE\)\(DE.\) Giao điểm là điểm \(E.\)

c) Có 8 đoạn thẳng ở hình vẽ, đó là: \(AB;\,\,DE;\,\,AC;\,\,CE;\,\,AE;\,\,BC;\,\,CD;\,\,BD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP