Một lớp học có 40 học sinh, trong đó có 18 học sinh tham gia môn bóng đá và 10 học sinh tham gia môn bóng chuyền, trong đó có 6 học sinh tham gia cả hai môn bóng đá và bóng chuyền. Thầy giáo chọn ngẫu nhiên một học sinh từ lớp học để làm nhiệm vụ đặc biệt. Gọi \(A\) là biến cố “Chọn được một học sinh tham gia môn bóng đá”, \(B\) là biến cố “Chọn được một học sinh tham gia môn bóng chuyền”.
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 8 có đáp án !!
Quảng cáo
Trả lời:
a) \(P\left( A \right) = \frac{{18}}{{40}} = \frac{9}{{20}}\).
b) \(P\left( B \right) = \frac{{10}}{{40}} = \frac{1}{4}\).
c) \(P\left( {AB} \right) = \frac{6}{{40}} = \frac{3}{{20}}\).
d) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{9}{{20}} + \frac{1}{4} - \frac{3}{{20}} = \frac{{11}}{{20}}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.
Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).
Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).
Giả sử Bình thắng ở lần rút thứ n.
Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là
\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).
Do đó xác suất để Bình thắng là:
\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).
Vì \(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).
Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).
Trả lời: 62.
Lời giải
Gọi \(A\) là biến cố “Lấy gói quà màu đỏ từ hộp I”;
\(B\) là biến cố “Lấy gói quà màu đỏ từ hộp II”.
\(C\) là biến cố “Xúc xắc xuất hiện mặt 6 chấm”.
Theo đề ta có \(A,B,C\) là các biến cố độc lập và \(P\left( A \right) = \frac{4}{{10}} = \frac{2}{5};P\left( B \right) = \frac{2}{{10}} = \frac{1}{5}\); \(P\left( C \right) = \frac{1}{6} \Rightarrow P\left( {\overline C } \right) = \frac{5}{6}\).
Gọi \(D\) là biến cố “Lấy được gói quà màu đỏ” \( \Rightarrow D = AC \cup B\overline C \).
Vậy \(P\left( D \right) = P\left( {AC} \right) + P\left( {B\overline C } \right) = P\left( A \right) \cdot P\left( C \right) + P\left( B \right) \cdot P\left( {\overline C } \right) = \frac{2}{5} \cdot \frac{1}{6} + \frac{1}{5} \cdot \frac{5}{6} = \frac{7}{{30}} \approx 0,23\).
Trả lời: 0,23.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{1}{{35}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.