Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng có dạng \(\frac{a}{b}\). Tính \(a + b\).
Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng có dạng \(\frac{a}{b}\). Tính \(a + b\).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.
Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).
Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).
Giả sử Bình thắng ở lần rút thứ n.
Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là
\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).
Do đó xác suất để Bình thắng là:
\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).
Vì \(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).
Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).
Trả lời: 62.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Vì \(A,B\) là hai biến cố độc lập nên \(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{2}{{15}}:\frac{1}{3} = \frac{2}{5}\). Chọn A.
Câu 2
Lời giải
Vì \(A\) và \(B\) là hai biến cố độc lập nên \(A\) và \(\overline B \) cũng là hai biến cố độc lập.
Ta có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) \Rightarrow P\left( B \right) = 0,5:0,8 = 0,625 \Rightarrow P\left( {\overline B } \right) = 0,375\).
Có \(P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B } \right) = 0,8 \cdot 0,375 = 0,3\). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.