Gieo ngẫu nhiên đồng thời ba con xúc xắc đồng chất. Xác suất để tích số chấm của mặt trên ba con xúc xắc bằng 36 gần nhất với giá trị nào sau đây:
Quảng cáo
Trả lời:
Đáp án đúng là C
Phương pháp giải
Sử dụng phương pháp tính theo định nghĩa xác suất cổ điển.
Lời giải
Số khả năng có thể xảy ra với số chấm trên mặt trên của ba con xúc xắc lần lượt là \(a,b,c\left( {1 \le a,b,c \le 6} \right)\)
Số phần tử của không gian mẫu là \(N\left( {\rm{\Omega }} \right) = {6^3} = 216\).
Ta xét các trường hợp có thể xảy ra của \(a\) :
Với \(a = 1\), ta có \(bc = 36 \Rightarrow \left( {b,c} \right) \in \left\{ {\left( {6;6} \right)} \right\}\)
Với \(a = 2\), ta có \(bc = 18 \Rightarrow \left( {b,c} \right) \in \left\{ {\left( {3;6} \right);\left( {6;3} \right)} \right\}\)
Với \(a = 3\), ta có \(bc = 12 \Rightarrow \left( {b,c} \right) \in \left\{ {\left( {2;6} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {6;2} \right)} \right\}\)
Với \(a = 4\), ta có \(bc = 9 \Rightarrow \left( {b,c} \right) \in \left\{ {\left( {3;3} \right)} \right\}\)
Với \(a = 6\), ta có \(bc = 6 \Rightarrow \left( {b,c} \right) \in \left\{ {\left( {1;6} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {6;1} \right)} \right\}\)
Từ đó, ta có thể thấy có tất cả 12 trường hợp có thể xảy ra khi \(abc = 36\).
Xác suất của biến cố "tích số chấm của mặt trên ba con xúc sắc bằng 36" là: \(P\left( A \right) = \frac{{12}}{{216}} = \frac{1}{{18}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là C
Phương pháp giải
Áp dụng công thức
Lời giải
Trung bình chiều cao các học sinh trong lớp là:
\(\overline x = 0,15.\frac{{145 + 155}}{2} + 0,3.\frac{{155 + 165}}{2} + 0,4.\frac{{165 + 175}}{2} + 0,15.\frac{{175 + 185}}{2} = 165,5\) (cm)
Lời giải
Đáp án đúng là "117"
Phương pháp giải
Tìm công thức tổng quát của số tiền
Lời giải
Gọi \({u_n}\) là số tiền sau tháng thứ \(n,M\) là số tiền gửi vào hàng tháng, \(r\) là lãi suất hàng tháng.
Ta có công thức truy hồi như sau: \(\left\{ {\begin{array}{*{20}{l}}{{u_0} = 0}\\{{u_{n + 1}} = \left( {{u_n} + M} \right).\left( {1 + r} \right)\forall n \in \mathbb{N}}\end{array}} \right.\)
Biến đổi công thức truy hồi trên:
\({u_{n + 1}} = \left( {{u_n} + M} \right)\left( {1 + r} \right)\)
\( \Leftrightarrow {u_{n + 1}} + \frac{{M\left( {1 + r} \right)}}{r} = \left( {1 + r} \right){u_n} + \frac{{M{{(1 + r)}^2}}}{r}\)
\( \Leftrightarrow {u_{n + 1}} + \frac{{M\left( {1 + r} \right)}}{r} = \left( {1 + r} \right)\left( {{u_n} + \frac{{M\left( {1 + r} \right)}}{r}} \right)\)
Đặt \({u_n} + \frac{{M\left( {1 + r} \right)}}{r} = {v_n}\), khi đó ta có
\(\left\{ {\begin{array}{*{20}{l}}{{v_0} = \frac{{M\left( {1 + r} \right)}}{r}}\\{{v_{n + 1}} = \left( {1 + r} \right){v_n}}\end{array} \Rightarrow {v_n} = \frac{{M{{(1 + r)}^{n + 1}}}}{r}\forall n \in \mathbb{N}} \right.\)
Khi đó \({u_n} = {v_n} - \frac{{M\left( {1 + r} \right)}}{r} = \frac{{M\left( {{{(1 + r)}^{n + 1}} - \left( {1 + r} \right)} \right)}}{r}\)
Cho \(r = 0,8{\rm{\% }};M = 2000000;n = 48\), ta tính được \({u_{48}} \approx 117408000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


