Câu hỏi:

26/12/2025 12 Lưu

Xét hình bình hành \(ABCD\) có tâm \(O\), đẳng thức nào sau đây là đúng?

 

A. \(\overrightarrow {AB} = \overrightarrow {CD} \).      
B. \(\overrightarrow {AO} + \overrightarrow {DO} = \overrightarrow {DC} \).
C. \(\overrightarrow {AD} + \overrightarrow {AO} = \overrightarrow {BO} \).     
D. \(\overrightarrow {BC} + \overrightarrow {OA} = \overrightarrow {DO} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Sử dụng những tính chất liên quan đến các vectơ bằng nhau.

Lời giải

Do \(ABCD\) là hình bình hành có tâm \(O\) nên \(O\) là trung điểm \(\overrightarrow {AC} \), tức là \(\overrightarrow {AO} = \overrightarrow {OC} \).

Khi đó, \(\overrightarrow {AO} + \overrightarrow {DO} = \overrightarrow {OC} + \overrightarrow {DO} = \overrightarrow {DO} + \overrightarrow {OC} = \overrightarrow {DC} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(145,5{\rm{\;cm}}\). 
B. \(155,5{\rm{\;cm}}\).   
C. \(165,5{\rm{\;cm}}\).               
D. \(175,5{\rm{\;cm}}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Áp dụng công thức

Lời giải

Trung bình chiều cao các học sinh trong lớp là:

\(\overline x = 0,15.\frac{{145 + 155}}{2} + 0,3.\frac{{155 + 165}}{2} + 0,4.\frac{{165 + 175}}{2} + 0,15.\frac{{175 + 185}}{2} = 165,5\) (cm)

Lời giải

Đáp án đúng là "128"

Phương pháp giải

Vẽ bảng biến thiên của hàm số cho từng trường hợp của \(m\).

Lời giải

Với \(m = 0\), hàm số \(f\left( x \right) = {x^2}\) không có giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Với \(m < 0\), có  nên hàm số không có giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Với \(m > 0\), ta xét hàm số:

\(f'\left( x \right) = 2x - \frac{m}{{{x^2}}}\). Cho \(f'\left( x \right) = 0 \Leftrightarrow \frac{{2{x^3} - m}}{{{x^2}}} = 0 \Leftrightarrow x = \sqrt[3]{{\frac{m}{2}}}\)

Khi đó, vẽ bảng biến thiên, ta thấy hàm số đã cho đạt giá trị nhỏ nhất tại \(x = \sqrt[3]{{\frac{m}{2}}}\). Vậy giá trị nhỏ nhất của hàm số là \(f\left( {\sqrt[3]{{\frac{m}{2}}}} \right) = \sqrt[3]{{\frac{{{m^2}}}{4}}} + \sqrt[3]{{2{m^2}}} + m = m + \frac{3}{2}\sqrt[3]{{2{m^2}}}\)

Cho

\(m + \frac{3}{2}\sqrt[3]{{2{m^2}}} = 176 \Leftrightarrow 2.\frac{m}{2} + 3\sqrt[3]{{{{\left( {\frac{m}{2}} \right)}^2}}} = 176\)

\( \Leftrightarrow \left( {\sqrt[3]{{\frac{m}{2}}} - 4} \right)\left( {2{{\left( {\sqrt[3]{{\frac{m}{2}}}} \right)}^2} + 11\sqrt[3]{{\frac{m}{2}}} + 44} \right) = 0\)

\( \Leftrightarrow \sqrt[3]{{\frac{m}{2}}} = 4 \Leftrightarrow m = 128\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP