Câu hỏi:

26/12/2025 11 Lưu

Một chất điểm chuyển động có vận tốc được thể hiện ở đồ thị bên. Trong khoảng thời gian từ 2 s đến 14 s, chất điểm nói trên di chuyển được quãng đường có độ dài bao nhiêu mét? (nhập đáp án vào ô trống)

loading...

Đáp án:  ____

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 103

Đáp án đúng là "103"

Phương pháp giải

Viết biểu thức vận tốc đối với từng đoạn một, sau đó lấy tích phân để tính quãng đường.

Lời giải

Từ đồ thị vận tốc theo thời gian, ta có thể biểu diễn hàm số của vận tốc theo thời gian như sau:

\(v\left( t \right) = \left\{ {\begin{array}{*{20}{l}}{2t\,\,(0 \le t < 4)}\\{6 + \frac{t}{2}\,\,(4 \le t < 8)}\\{10\,\,(8 \le t < 12)}\\{\frac{{ - 5t}}{2} + 40\,\,\left( {12 \le t \le 16} \right)}\end{array}} \right.\)

Khi đó, quãng đường chất điểm đi được trong khoảng thời gian từ 2s đến 14s là:

Vậy quãng đường chất điểm di chuyển được trong thời gian trên là 103 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(145,5{\rm{\;cm}}\). 
B. \(155,5{\rm{\;cm}}\).   
C. \(165,5{\rm{\;cm}}\).               
D. \(175,5{\rm{\;cm}}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Áp dụng công thức

Lời giải

Trung bình chiều cao các học sinh trong lớp là:

\(\overline x = 0,15.\frac{{145 + 155}}{2} + 0,3.\frac{{155 + 165}}{2} + 0,4.\frac{{165 + 175}}{2} + 0,15.\frac{{175 + 185}}{2} = 165,5\) (cm)

Lời giải

Đáp án đúng là "128"

Phương pháp giải

Vẽ bảng biến thiên của hàm số cho từng trường hợp của \(m\).

Lời giải

Với \(m = 0\), hàm số \(f\left( x \right) = {x^2}\) không có giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Với \(m < 0\), có  nên hàm số không có giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\).

Với \(m > 0\), ta xét hàm số:

\(f'\left( x \right) = 2x - \frac{m}{{{x^2}}}\). Cho \(f'\left( x \right) = 0 \Leftrightarrow \frac{{2{x^3} - m}}{{{x^2}}} = 0 \Leftrightarrow x = \sqrt[3]{{\frac{m}{2}}}\)

Khi đó, vẽ bảng biến thiên, ta thấy hàm số đã cho đạt giá trị nhỏ nhất tại \(x = \sqrt[3]{{\frac{m}{2}}}\). Vậy giá trị nhỏ nhất của hàm số là \(f\left( {\sqrt[3]{{\frac{m}{2}}}} \right) = \sqrt[3]{{\frac{{{m^2}}}{4}}} + \sqrt[3]{{2{m^2}}} + m = m + \frac{3}{2}\sqrt[3]{{2{m^2}}}\)

Cho

\(m + \frac{3}{2}\sqrt[3]{{2{m^2}}} = 176 \Leftrightarrow 2.\frac{m}{2} + 3\sqrt[3]{{{{\left( {\frac{m}{2}} \right)}^2}}} = 176\)

\( \Leftrightarrow \left( {\sqrt[3]{{\frac{m}{2}}} - 4} \right)\left( {2{{\left( {\sqrt[3]{{\frac{m}{2}}}} \right)}^2} + 11\sqrt[3]{{\frac{m}{2}}} + 44} \right) = 0\)

\( \Leftrightarrow \sqrt[3]{{\frac{m}{2}}} = 4 \Leftrightarrow m = 128\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP