Câu hỏi:

29/12/2025 8 Lưu

Cho hàm số \[f\left( x \right)\] liên tục trên \[\mathbb{R}\] và \[\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 1;\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \]. Có bao nhiêu giá trị nguyên của tham số \[m\] thuộc \[\left[ { - 2020;2020} \right]\] để đồ thị hàm số \[g\left( x \right) = \frac{{\sqrt {{x^2} + 1000x}  + x}}{{\sqrt {2f\left( x \right) - {f^2}\left( x \right)}  + m}}\] có tiệm cận ngang   nằm dưới đường thẳng \[y =  - 1\] .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

499

Đáp án: \[499\].

\[\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty  \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } \left[ {2f\left( x \right) - {f^2}\left( x \right)} \right] =  - \infty \] nên không tồn tại \[\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right)\].\[\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \left[ {\sqrt {2f\left( x \right) - {f^2}\left( x \right)}  + m} \right] = 1 + m\].\[\mathop {\lim }\limits_{x \to  - \infty } \left[ {\sqrt {{x^2} + 1000x}  + x} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{1000x}}{{\sqrt {{x^2} + 1000x}  - x}}} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{1000}}{{ - \sqrt {1 + 1000/x}  - 1}}} \right] =  - 500.\]

\[\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = \frac{{ - 500}}{{1 + m}}\left( {m \ne  - 1} \right)\] suy ra tiệm cận ngang của đồ thị hàm số \[g\left( x \right)\] là đường thẳng \[y = \frac{{ - 500}}{{1 + m}}\]

Để đồ thị hàm số \[g\left( x \right)\] có tiệm cận ngang nằm dưới đường thẳng \[y =  - 1\] khi và chỉ khi \[\frac{{ - 500}}{{1 + m}} <  - 1 \Leftrightarrow \frac{{m - 499}}{{m + 1}} < 0 \Leftrightarrow  - 1 < m < 499\] mà \[m\] nguyên thuộc \[\left[ { - 2020;2020} \right]\] nên \[m \in \left\{ {0;1;2;...;498} \right\}\].

Vậy có \[498 - 0 + 1 = 499\] giá trị nguyên của \[m\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(15\)

Từ giả thiết, điểm \(M\) thuộc mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\);

Có \(MA = MB\), suy ra \(M\) thuộc mặt phẳng trung trực của \(AB\)là \(\left( Q \right):y + z = 0\);

Suy ra\(M\)thuộc giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Ta tìm được đó là đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 - 3t\\y = t\\z =  - t\end{array} \right.\).

Tham số hóa \(M\left( {1 - 3t;t; - t} \right)\) thì \(\overrightarrow {AM} \left( { - 1 - 3t;t - 2; - t} \right);\overrightarrow {BM} \left( { - 1 - 3t;t; - t + 2} \right)\)

Suy ra \(\cos AMB = \frac{{\overrightarrow {MA} .\overrightarrow {MB} }}{{MA.MB}} = \frac{{{{\left( {1 + 3t} \right)}^2} + t\left( {t - 2} \right).2}}{{{{\left( {1 + 3t} \right)}^2} + {{\left( {t - 2} \right)}^2} + {t^2}}} = \frac{{11{t^2} + 2t + 1}}{{11{t^2} + 2t + 5}} = f\left( t \right)\)

Để góc \(AMB\) lớn nhất thì ta cần \[\cos AMB = f\left( t \right)\] nhỏ nhất.

Khảo sát hàm \(f\left( t \right)\)ta được \(f\left( t \right)\)nhỏ nhất khi và chỉ khi \(t =  - \frac{1}{{11}}\).

Suy ra \(M\left( {\frac{{14}}{{11}}; - \frac{1}{{11}};\frac{1}{{11}}} \right)\). Vậy \(S = 15\).

Lời giải

Trả lời: 8

Hai thành phố \(A\) và \(B\) cách nhau một c (ảnh 1)

Đặt \[HE = {x_{}}{,_{}}FK = y\], với \[x,\,y > 0\]

Ta có: \[HE + KF = 20 \Rightarrow x + y = 20\], \[\left\{ \begin{array}{l}AE = \sqrt {16 + {x^2}} \\BF = \sqrt {36 + {y^2}}  = \sqrt {36 + {{\left( {20 - x} \right)}^2}} \end{array} \right.\]

Nhận xét: Vì \[EF\] không đổi nên \[AB\] ngắn nhất khi \[AE + BF\] nhỏ nhất.

Ta có \[AE + BF\]\[ = \sqrt {{x^2} + 16}  + \sqrt {{{\left( {20 - x} \right)}^2} + 36}  = \sqrt {{x^2} + 16}  + \sqrt {{x^2} - 40x + 436}  = f\left( x \right)\]

Đạo hàm \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 16} }} + \frac{{x - 20}}{{\sqrt {{x^2} - 40x + 436} }} = 0 \Rightarrow x = 8,\,\forall x \in \left( {0;20} \right)\]\[\]

Bảng biến thiên

Hai thành phố \(A\) và \(B\) cách nhau một c (ảnh 2)

Vậy \(HE = 8\)km

Câu 6

a) Số dân của thị trấn vào đầu năm 1980 là 18 nghìn người.
Đúng
Sai
b) Số dân của thị trấn vào đầu năm 1995 là 23 nghìn người.
Đúng
Sai
c) Xem \(f\) là một hàm số xác định trên nửa khoảng \([0, + \infty )\). Vậy hàm số đồng biến trên \([0, + \infty )\).
Đúng
Sai
d) Đạo hàm của hàm số \(f\) biểu thị tốc độ tăng dân số của thị trấn (tính bằng nghìn người/năm). Vào năm 1998 thì tốc độ tăng dân số là \(0,125\) nghìn người/năm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP