Cho \(\frac{x}{7} = \frac{y}{4}\) và \(x - y = 12\) thì giá trị của \(x\) và \[y\] là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7} = \frac{y}{4} = \frac{{x - y}}{{7 - 4}} = \frac{{12}}{3} = 4\).
Do đó, \(x = 28,\,\,y = 16\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi độ dài các cạnh của tam giác đó là \[x,y,z{\rm{ }}\left( {x,y,z > 0} \right)\] .
Theo đề bài, ta có: \[\frac{x}{5} = \frac{y}{6} = \frac{z}{7}\] và \[x + y + z = 36\].
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \[\frac{x}{5} = \frac{y}{6} = \frac{z}{7} = \frac{{x + y + z}}{{5 + 6 + 7}} = \frac{{36}}{{18}} = 2\].
Suy ra \[x = 5 \cdot 2 = 10;{\rm{ }}y = 6 \cdot 2 = 12;{\rm{ }}z = 7 \cdot 2 = 14\].
Do đó, độ dài cạnh lớn nhất của tam giác đó là 14.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.