Gieo một xúc xắc hai lần liên tiếp. Xác suất của biến cố “Tích số chấm trong hai lần gieo là số chẵn” bằng \(\frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính \(a \cdot b\).
Gieo một xúc xắc hai lần liên tiếp. Xác suất của biến cố “Tích số chấm trong hai lần gieo là số chẵn” bằng \(\frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính \(a \cdot b\).
Quảng cáo
Trả lời:
Đáp án:
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {6^2} = 36\).
Gọi \(A\) là biến cố “Tích số chấm trong hai lần gieo là số chẵn”.
Xét biến cố \(\overline A \) “Tích số chấm trong hai lần gieo là số lẻ”.
Các số lẻ trên mặt con xúc xắc là \(\left\{ {1;3;5} \right\}\).
Khi đó \(n\left( {\overline A } \right) = 3 \cdot 3 = 9\)\( \Rightarrow n\left( A \right) = 27\).
Do đó \(P\left( A \right) = \frac{{27}}{{36}} = \frac{3}{4}\). Suy ra \(a = 3;b = 4\). Do đó \(a \cdot b = 12\).
Trả lời: 12.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(n\left( \Omega \right) = 20\).
Gọi \(A\) là biến cố lấy được một tấm thẻ ghi số lẻ và chia hết cho 3 \( \Rightarrow A = \left\{ {3;9;15} \right\}\).
Do đó \(n\left( A \right) = 3 \Rightarrow P\left( A \right) = \frac{3}{{20}} = 0,15\).
Trả lời: 0,15.
Câu 2
Lời giải
a) Số phần tử của không gian mẫu là 36.
b) Gọi \(A\) là biến cố “Tổng số chấm của hai lần gieo chia hết cho 5”.
Khi đó \(A = \left\{ {\left( {1;4} \right);\left( {4;1} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;5} \right)} \right\} \Rightarrow n\left( A \right) = 7\).
Do đó \(P\left( A \right) = \frac{7}{{36}}\).
c) Gọi \(B\) là biến cố “Tổng số chấm của hai lần gieo lớn hơn 6”.
\(B = \left\{ \begin{array}{l}\left( {1;6} \right);\left( {6;1} \right);\left( {2;5} \right);\left( {5;2} \right);\left( {2;6} \right);\left( {6;2} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {3;5} \right);\\\left( {5;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {5;4} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;5} \right);\left( {6;6} \right)\end{array} \right\}\)\( \Rightarrow n\left( B \right) = 21\).
Do đó \(P\left( B \right) = \frac{{21}}{{36}} = \frac{7}{{12}}\).
d) \(C\) là biến cố “Lần thứ nhất xuất hiện mặt 2 chấm” .
\(C = \left\{ {\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right)} \right\}\)\( \Rightarrow n\left( C \right) = 6\).
Do đó \(P\left( C \right) = \frac{6}{{36}} = \frac{1}{6}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.