Câu hỏi:

15/01/2026 8 Lưu

Một nhóm học sinh gồm 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên đồng thời 3 học sinh. Tính xác suất để trong 3 học sinh được chọn luôn có học sinh nữ?

A. \(\frac{1}{3}\).       
B. \(\frac{5}{6}\).       
C. \(\frac{2}{3}\).           
D. \(\frac{1}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{10}^3 = 120\).

Gọi \(A\) là biến cố “Chọn 3 học sinh luôn có học sinh nữ”.

\(\overline A \) là biến cố “Chọn 3 học sinh không có học sinh nữ”.

Khi đó \(n\left( {\overline A } \right) = C_6^3 = 20\).

Khi đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{20}}{{120}} = \frac{5}{6}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số phần tử của không gian mẫu là 90.
Đúng
Sai
b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).
Đúng
Sai
c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).
Đúng
Sai
d) Xác suất để rút được hai tấm thẻ có tổng là một số lẻ là \(\frac{5}{9}\).
Đúng
Sai

Lời giải

a) Số phần tử của không gian mẫu là \(C_{10}^2 = 45\).

b) Gọi \(A\) là biến cố “hai tấm thẻ được đánh số cùng chia hết hết cho 2”.

Các số chia hết cho 2 là \(\left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = C_5^2 = 10\).

Do đó \(P\left( A \right) = \frac{{10}}{{45}} = \frac{2}{9}\).

c) Gọi \(B\) là biến cố “hai tấm thẻ được đánh số đều là số nguyên tố”.

Các số nguyên tố là \(\left\{ {2;3;5;7} \right\}\)\( \Rightarrow n\left( B \right) = C_4^2 = 6\).

Do đó \(P\left( B \right) = \frac{6}{{45}} = \frac{2}{{15}}\).

d) Gọi \(C\) là biến cố “hai tấm thẻ có tổng là một số lẻ”.

Từ 1 đến 10 có 5 số chẵn và 5 số lẻ.

Để tổng 2 số là số lẻ thì cần lấy được 1 số chẵn và số lẻ. Khi đó \(n\left( C \right) = C_5^1 \cdot C_5^1 = 25\).

Do đó \(P\left( C \right) = \frac{{25}}{{45}} = \frac{5}{9}\).

Đáp án: a) Sai;    b) Đúng;     c) Sai;    d) Đúng.

Lời giải

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

Trả lời: 0,03.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP