Rút ngẫu nhiên đồng thời 2 thẻ từ một hộp có 20 tấm thẻ được đánh số từ 1 đến 20. Xác suất để tổng hai số trên hai tấm thẻ được rút ra bằng 10 là
Rút ngẫu nhiên đồng thời 2 thẻ từ một hộp có 20 tấm thẻ được đánh số từ 1 đến 20. Xác suất để tổng hai số trên hai tấm thẻ được rút ra bằng 10 là
A. \(\frac{9}{{190}}\).
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là \(C_{20}^2 = 190\).
Gọi \(A\) là biến cố “Tổng hai số trên hai tấm thẻ được rút ra bằng 10”.
Ta có \(1 + 9 = 2 + 8 = 3 + 7 = 4 + 6\)\( \Rightarrow n\left( A \right) = 4\).
Vậy \(P\left( A \right) = \frac{4}{{190}} = \frac{2}{{95}}\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Số phần tử của không gian mẫu là \(C_{10}^2 = 45\).
b) Gọi \(A\) là biến cố “hai tấm thẻ được đánh số cùng chia hết hết cho 2”.
Các số chia hết cho 2 là \(\left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = C_5^2 = 10\).
Do đó \(P\left( A \right) = \frac{{10}}{{45}} = \frac{2}{9}\).
c) Gọi \(B\) là biến cố “hai tấm thẻ được đánh số đều là số nguyên tố”.
Các số nguyên tố là \(\left\{ {2;3;5;7} \right\}\)\( \Rightarrow n\left( B \right) = C_4^2 = 6\).
Do đó \(P\left( B \right) = \frac{6}{{45}} = \frac{2}{{15}}\).
d) Gọi \(C\) là biến cố “hai tấm thẻ có tổng là một số lẻ”.
Từ 1 đến 10 có 5 số chẵn và 5 số lẻ.
Để tổng 2 số là số lẻ thì cần lấy được 1 số chẵn và số lẻ. Khi đó \(n\left( C \right) = C_5^1 \cdot C_5^1 = 25\).
Do đó \(P\left( C \right) = \frac{{25}}{{45}} = \frac{5}{9}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Số phần tử của không gian mẫu là \(8! = 40320\).
Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.
TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.
TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.
Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).
Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).
Trả lời: 0,03.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(P = \frac{{11}}{{56}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.