PHẦN II. TỰ LUẬN
Cho biểu thức \(A = \frac{{5x + 1}}{{2x - 3}} \cdot \frac{{x + 2}}{{25{x^2} - 1}} - \frac{{8 - 3x}}{{25{x^2} - 1}}:\frac{{2x - 3}}{{5x + 1}}.\)
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Tìm phân thức \(B\) biết \(A \cdot B = \frac{{x + 2}}{{5x - 1}}.\)
c) Tính giá trị của biểu thức \(B\) tại \(x = \frac{3}{5}.\)
PHẦN II. TỰ LUẬN
Cho biểu thức \(A = \frac{{5x + 1}}{{2x - 3}} \cdot \frac{{x + 2}}{{25{x^2} - 1}} - \frac{{8 - 3x}}{{25{x^2} - 1}}:\frac{{2x - 3}}{{5x + 1}}.\)
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Tìm phân thức \(B\) biết \(A \cdot B = \frac{{x + 2}}{{5x - 1}}.\)
c) Tính giá trị của biểu thức \(B\) tại \(x = \frac{3}{5}.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \(25{x^2} - 1 = {\left( {5x} \right)^2} - 1 = \left( {5x - 1} \right)\left( {5x + 1} \right).\)
Khi đó, biểu thức \(A\) xác định khi và chỉ khi \(2x - 3 \ne 0;\) \(5x - 1 \ne 0;\) \(5x + 1 \ne 0\) hay \(x \ne \frac{3}{2};\) \(x \ne \frac{1}{5};\) \(x \ne - \frac{1}{5}.\)
b) Với \(x \ne \frac{3}{2};\) \(x \ne \frac{1}{5};\) \(x \ne - \frac{1}{5}\) ta có:
\(A = \frac{{5x + 1}}{{2x - 3}} \cdot \frac{{x + 2}}{{25{x^2} - 1}} - \frac{{8 - 3x}}{{25{x^2} - 1}}:\frac{{2x - 3}}{{5x + 1}}\)
\( = \frac{{5x + 1}}{{2x - 3}} \cdot \frac{{x + 2}}{{25{x^2} - 1}} - \frac{{8 - 3x}}{{25{x^2} - 1}} \cdot \frac{{5x + 1}}{{2x - 3}}\)
\( = \frac{{5x + 1}}{{2x - 3}} \cdot \left( {\frac{{x + 2}}{{25{x^2} - 1}} - \frac{{8 - 3x}}{{25{x^2} - 1}}} \right)\)
\( = \frac{{5x + 1}}{{2x - 3}} \cdot \left( {\frac{{x + 2 - 8 + 3x}}{{25{x^2} - 1}}} \right)\)
\( = \frac{{5x + 1}}{{2x - 3}} \cdot \frac{{4x - 6}}{{25{x^2} - 1}}\)
\( = \frac{{\left( {5x + 1} \right) \cdot 2\left( {2x - 3} \right)}}{{\left( {2x - 3} \right) \cdot \left( {5x - 1} \right)\left( {5x + 1} \right)}}\)\( = \frac{2}{{5x - 1}}.\)
Do đó \(A = \frac{2}{{5x - 1}}.\)
Từ \(A \cdot B = \frac{{x + 2}}{{5x - 1}}\) suy ra \[B = \frac{{x + 2}}{{5x - 1}}:A = \frac{{x + 2}}{{5x - 1}}:\frac{2}{{5x - 1}} = \frac{{x + 2}}{{5x - 1}} \cdot \frac{{5x - 1}}{2} = \frac{{x + 2}}{2}.\]
Vậy \(B = \frac{{x + 2}}{2}.\)
c) Thay \(x = \frac{3}{5}\) vào biểu thức \(B = \frac{{x + 2}}{2},\) ta được: \(B = \frac{{\frac{3}{5} + 2}}{2} = \frac{{\frac{{13}}{5}}}{2} = \frac{{13}}{{10}}.\)
Vậy với \(x = \frac{3}{5}\) thì \(B = \frac{{13}}{{10}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat {BAC} = \widehat {BHA} = 90^\circ \) và \(\widehat B\) là góc chung.
Do đó (g.g).
b) Vì tam giác \(ABC\) vuông tại \(A,\) theo định lí Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\)
Suy ra \(BC = 10{\rm{\;cm}}.\) Theo câu a), nên \(\frac{{AC}}{{HA}} = \frac{{BC}}{{AB}}\) (tỉ số cạnh tương ứng).
Suy ra \(AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{6 \cdot 8}}{{10}} = 4,8{\rm{\;cm}}{\rm{.}}\)
c) Xét \(\Delta ACD\) và \(\Delta HCE\) có:
\(\widehat {DAC} = \widehat {EHC} = 90^\circ \) và \(\widehat {ACD} = \widehat {HCE}\) (do \(CD\) là tia phân giác của \(\widehat {ACB}).\)
Do đó (g.g).
Suy ra \[\frac{{AC}}{{HC}} = \frac{{AD}}{{HE}}\] (tỉ số cạnh tương ứng) nên \[\frac{{AC}}{{AD}} = \frac{{HC}}{{HE}}\] (*)
d) ⦁ Chứng minh tương tự câu a), ta cũng có: (g.g).
Mà hay nên
Suy ra \[\frac{{BH}}{{AH}} = \frac{{AB}}{{CA}}\] (tỉ số cạnh tương ứng), do đó \[BH = \frac{{AB}}{{AC}} \cdot AH = \frac{6}{8} \cdot 4,8 = 3,6{\rm{\;cm}}.\]
Khi đó \[HC = BC - BH = 10 - 3,6 = 6,4{\rm{\;cm}}.\]
⦁ Ta có \(CD\) là phân giác \(\widehat {ACB}\) nên \(\frac{{CA}}{{CB}} = \frac{{DA}}{{DB}},\) do đó \[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}}.\]
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}} = \frac{{AC + BC}}{{AD + BD}} = \frac{{AC + BC}}{{AB}} = \frac{{8 + 10}}{6} = 3.\]
Suy ra \(AD = \frac{{AC}}{3} = \frac{8}{3}{\rm{\;cm}}\) và \[\frac{{HC}}{{HE}} = \frac{{AC}}{{AD}} = 3.\]
Khi đó \[HE = \frac{{HC}}{3} = \frac{{6,4}}{3} = \frac{{32}}{{15}}.\]
Ta có \[\frac{{{S_{\Delta ACD}}}}{{{S_{\Delta HCE}}}} = \frac{{\frac{1}{2}AD \cdot AC}}{{\frac{1}{2}HE \cdot HC}} = \frac{{AD \cdot AC}}{{HE \cdot HC}} = \frac{{\frac{8}{3} \cdot 8}}{{\frac{{32}}{{15}} \cdot 6,4}} = \frac{{25}}{{16}}.\]
Lời giải
Hướng dẫn giải
Đổi \(20\)phút \[ = \frac{1}{3}\] giờ.
Gọi quãng đường AB là \[x\] (km) \(\left( {x > 0} \right).\)
Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).
Lúc về người đó tăng vận tốc thêm \(5\) km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\] (km/h).
Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).
Vì thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút \[( = \frac{1}{3}\] giờ) nên ta có phương trình:
\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)
\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{{120}}{{360}}\)
\(9x - 8x = 120\)
\(x = 120\) (thỏa mãn).
Vậy quãng đường AB là \(120\) km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.