Câu hỏi:

20/01/2026 91 Lưu

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 \), \(AA' = 2a\). Khoảng cách giữa hai đường thẳng \(BD\)\(CD'\) bằng:

A. \(\frac{{a\sqrt 5 }}{5}\).                          
B. \(\frac{{2a\sqrt 5 }}{5}\).     
C. \(2a\).                         
D. \(a\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(O,\,\) lần lượt là tâm của hai mặt đáy. Khi đó tứ giác \(COO'C'\)là hình bình hành và \(C'O' = \frac{{AC}}{2} = a\).

Do \(BD\;{\rm{//}}\;B'D'\)\[ \Rightarrow BD\;{\rm{//}}\;\left( {CB'D'} \right)\] nên ta có:

\(d\left( {BD,CD'} \right) = d\left( {O,\left( {CB'D'} \right)} \right) = d\left( {C',\left( {CB'D'} \right)} \right)\).

Ta có: \(\left\{ \begin{array}{l}B'D' \bot A'C'\\B'D' \bot CC'\end{array} \right. \Rightarrow B'D' \bot \left( {COO'C'} \right)\)

\( \Rightarrow \left( {CB'D'} \right) \bot \left( {COO'C'} \right)\).

Cho hình hộp chữ nhật ABCD.A'B'C'D'có đáy ABCD là hình vuông cạnh a căn 2  (ảnh 1)

Lại có \(\left( {CB'D'} \right) \cap \left( {COO'C'} \right) = CO'\).

Trong \(\Delta CC'O'\) hạ \(C'H \bot CO' \Rightarrow C'H \bot \left( {CB'D'} \right)\)\( \Rightarrow d\left( {BD,\,CD'} \right) = C'H\).

Khi đó: \(\frac{1}{{C'{H^2}}} = \frac{1}{{C{{C'}^2}}} + \frac{1}{{C'{{O'}^2}}} = \frac{1}{{{{\left( {2a} \right)}^2}}} + \frac{1}{{{a^2}}} = \frac{5}{{4{a^2}}}\)\( \Rightarrow C'H = \frac{{2a\sqrt 5 }}{5}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ như hình vẽ dưới.

Sân vận động Sport Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. (ảnh 2)

Ta cần tìm diện tích của \(S\left( x \right)\) thiết diện. Gọi \(d\left( {O,MN} \right) = x\).

Ta có \(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\) Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)} = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]

\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }} \cdot \sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \Rightarrow {R^2} = \frac{{{{90}^2}}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\].

Khi đó, \[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi - \frac{1}{2}} \right){R^2} = \left( {\pi - 2} \right)\frac{{2025}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]

Thể tích khoảng không cần tìm là: \(V = \int\limits_{ - 75}^{75} {\left( {\pi - 2} \right)\frac{{2025}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)dx \approx 115\,\,586\,\,\left( {{m^3}} \right).} \) Chọn B.

Câu 3

A. As we will eat or drink sugary foods.

 B. Eating and drinking sugary foods

C. After we ate or drank sugary foods.              

D. When we eat or drink sugary foods.    

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{x - 4}}{4} = \frac{{y - 3}}{3} = \frac{{z - 3}}{{ - 7}}\).

 B. \(\frac{{x + 4}}{4} = \frac{{y + 3}}{3} = \frac{{z - 3}}{1}\).

C. \(\frac{{x + 4}}{{ - 4}} = \frac{{y + 3}}{3} = \frac{{z - 3}}{1}\). 
D. \(\frac{{x + 8}}{4} = \frac{{y + 6}}{3} = \frac{{z - 10}}{{ - 7}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. căn cứ Củ Chi và địa đạo Vĩnh Mốc.   
B. cửa biển Thuận An và kinh đô Huế.
C. trụ sở Ủy ban hành chính Nam Bộ.          
D. cơ quan Trung ương cục miền Nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \in \left( { - \infty ;3} \right) \cup \left( {7; + \infty } \right)\).
B. \(m \in \left( {3;7} \right)\).         
C. \(m \in \left[ {3;7} \right]\).  
D. \(m \in \left( { - \infty ;3} \right] \cup \left[ {7; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP