Kết quả đo chiều cao của 200 cây keo 3 năm tuổi ở một nông trường được biểu diễn ở biểu đồ dưới đây.

Hãy ước lượng mốt của mẫu số liệu ghép nhóm trên (nhập đáp án vào ô trống).
Đáp án _____
Quảng cáo
Trả lời:
Chiều cao của 200 cây keo được thống kê như bảng sau:
|
Chiều cao (m) |
\(\left[ {8,5;\,8,8} \right)\) |
\(\left[ {8,8;\,9,1} \right)\) |
\(\left[ {9,1;\,9,4} \right)\) |
\(\left[ {9,4;\,9,7} \right)\) |
\(\left[ {9,7;\,10} \right)\) |
|
Số cây |
20 |
35 |
60 |
55 |
30 |
Nhóm chứa mốt của mẫu số liệu là \(\left[ {9,1;9,4} \right)\).
Do đó: \({u_m} = 9,1;\,\,{n_{m - 1}} = 35;\,\,{n_{m + 1}} = 55;\,\,{u_{m + 1}} - {u_m} = 9,4 - 9,1 = 0,3\).
Mốt của mẫu số liệu trên là: \({M_0} = 9,1 + \frac{{60 - 35}}{{\left( {60 - 35} \right) + \left( {60 - 55} \right)}} \cdot 0,3 = 9,35\,\,\left( m \right)\).
Đáp án cần nhập là: 9,35.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo giả thiết, ta có: \(P\left( 0 \right) = - 25\).
\(P\left( {90} \right) = P\left( 0 \right) + \int\limits_0^{90} {P'\left( x \right)\,} {\rm{d}}x = - 25 + \int\limits_0^{90} {\left( {16 - 0,02x} \right)} \,{\rm{d}}x = - 25 + \left. {\left( {16x - 0,01{x^2}} \right)} \right|_0^{90} = 1\,334\).
Vậy nếu trong tuần nhà máy bán được 90 tấn sản phẩm thì thu được lợi nhuận là 1 334 triệu đồng.
Đáp án cần nhập là: \(1\,334\).Câu 2
Lời giải
Chọn hệ trục tọa độ như hình vẽ dưới.

Ta cần tìm diện tích của \(S\left( x \right)\) thiết diện. Gọi \(d\left( {O,MN} \right) = x\).
Ta có \(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\) Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)} = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]
\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }} \cdot \sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \Rightarrow {R^2} = \frac{{{{90}^2}}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\].
Khi đó, \[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi - \frac{1}{2}} \right){R^2} = \left( {\pi - 2} \right)\frac{{2025}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]
Thể tích khoảng không cần tìm là: \(V = \int\limits_{ - 75}^{75} {\left( {\pi - 2} \right)\frac{{2025}}{2} \cdot \left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)dx \approx 115\,\,586\,\,\left( {{m^3}} \right).} \) Chọn B.
Câu 3
A. As we will eat or drink sugary foods.
B. Eating and drinking sugary foods
C. After we ate or drank sugary foods.
D. When we eat or drink sugary foods.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{x - 4}}{4} = \frac{{y - 3}}{3} = \frac{{z - 3}}{{ - 7}}\).
B. \(\frac{{x + 4}}{4} = \frac{{y + 3}}{3} = \frac{{z - 3}}{1}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

