Câu hỏi:

20/01/2026 114 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) > 0\)\(\left[ {f\left( x \right) + 6x} \right]f\left( x \right) = 9{x^4} + 3{x^2} + 4\,,\,\,\forall x \in \mathbb{R}.\) Giá trị lớn nhất của hàm số \(y = f\left( {2{x^2} - 3x + 1} \right)\) trên đoạn \[\left[ {0\,;\,\,1} \right]\] bằng

    

A. \(\frac{5}{2}.\)      
B. \(\frac{{17}}{7}.\) 
 C. \(\frac{{155}}{{64}}.\)       
D. \(\frac{{167}}{{69}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left[ {f\left( x \right) + 6x} \right]f\left( x \right) = 9{x^4} + 3{x^2} + 4 \Leftrightarrow {\left[ {f\left( x \right) + 3x} \right]^2} = {\left( {3{x^2} + 2} \right)^2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) + 3x = 3{x^2} + 2}\\{f\left( x \right) + 3x = - 3{x^2} - 2}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = 3{x^2} - 3x + 2}\\{f\left( x \right) = - 3{x^2} - 3x - 2\,\,(L)}\end{array}} \right.} \right.\)

Đặt \(t = 2{x^2} - 3x + 1\), với \(x \in \left[ {0\,;\,\,1} \right]\) thì \(t \in \left[ { - \frac{1}{8};1} \right]\)

Xét hàm \(g\left( t \right) = f\left( t \right)\) trên \(\left[ { - \frac{1}{8};1} \right]\), có \(g'\left( t \right) = f'\left( t \right) = 0 \Leftrightarrow 6t - 3 = 0 \Leftrightarrow t = \frac{1}{2} \in \left[ { - \frac{1}{8};1} \right]\)

\(g\left( { - \frac{1}{8}} \right) = \frac{{155}}{{64}};g\left( {\frac{1}{2}} \right) = \frac{5}{4};g\left( 1 \right) = 2.\)

Suy ra, \(\mathop {\max }\limits_{\left[ {0\,;\,\,1} \right]} y = \mathop {\max }\limits_{_{\left[ { - \frac{1}{8}\,;\,\,1} \right]}} g(t) = \frac{{155}}{{64}}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP