Câu hỏi:

22/01/2026 40 Lưu

Cho hàm số \[y = \left( {3--m} \right)x + 3m + 2.\] Tìm các giá trị của \[m\] để

a) hàm số đã cho là hàm số bậc nhất.

b) đồ thị hàm số đã cho là đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]

c) đồ thị hàm số đã cho là đường thẳng cắt đường thẳng \[y = x--1\] tại một điểm nằm trên trục tung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Để hàm số đã cho là hàm số bậc nhất thì \(3 - m \ne 0,\) hay \(m \ne 3.\)

b) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\) và \(y = 3\) thỏa mãn hàm số trên.

Do đó ta có: \[3 = \left( {3--m} \right) \cdot 1 + 3m + 2\]

\[3 = 3--m + 3m + 2\]

\[2m =  - 2\]

\(m =  - 1.\)

Vậy \(m =  - 1\) thỏa mãn yêu cầu đề bài.

c) Để đường thẳng \[y = \left( {3--m} \right)x + 3m + 2\] cắt đường thẳng \[y = x--1\] thì \(3 - m \ne 1,\) do đó \(m \ne 2.\)

Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.

Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)

Thay \({x_A} = 0\) vào hàm số \[y = x--1\] ta được \({y_A} = 0 - 1 =  - 1.\)

Thay \({x_A} = 0\) và \({y_A} =  - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:

\[ - 1 = \left( {3--m} \right) \cdot 0 + 3m + 2\]

\[ - 1 = 3m + 2\]

\[m =  - 1\] (thỏa mãn \(m \ne 2).\)

Vậy \(m =  - 1\) thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y =  - x + 2\) nên có dạng \(y =  - x + b\) với \(b \ne 2.\)

Vì đồ thị hàm số \(y =  - x + b\) cắt trục tung tại điểm có tung độ bằng 1, tức tại điểm \(\left( {0;1} \right)\) nên ta có: \(1 =  - 0 + b\) nên \(b = 1\) (thỏa mãn).

Vậy hàm số cần tìm là \(y =  - x + 1.\)

Lời giải

1)

1) Cho tam giác ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Tìm x (ảnh 1)

Ta có: \[BC = BD + DC\] nên \[DC = BC - BD = 21 - 9{\rm{ }} = 12.\]

Trong \(\Delta ABC,\) \[AD\] là phân giác của \(\widehat {BAC}\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác của tam giác)

Hay \(\frac{6}{x} = \frac{9}{{12}}\), suy ra \(x = \frac{{6 \cdot 12}}{9} = 8.\)

2)

1) Cho tam giác ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Tìm x (ảnh 2)

a) Trong \(\Delta ABC\) có các đường trung tuyến \[BD,{\rm{ }}CE\] nên \[D\] là trung điểm của \[AC,\] \[E\] là trung điểm của \[AB\] nên \[ED\] là đường trung bình của \(\Delta ABC.\)

Suy ra \(ED = \frac{1}{2}BC\) và \[ED\,{\rm{//}}\,BC\] (tính chất đường trung bình của tam giác).

b) Ta có: \[E\] là trung điểm của \[AB\] nên \(AE = EB = \frac{1}{2}AB.\)

Mà \[M\] là trung điểm của \[EB\] nên \(EM = MB = \frac{1}{2}EB = \frac{1}{4}AB\) hay \(\frac{{MB}}{{AB}} = \frac{1}{4}.\)

Tương tự, ta cũng có \(NC = \frac{1}{4}AC\) hay \(\frac{{NC}}{{AC}} = \frac{1}{4}.\)

Suy ra \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\,\,\left( { = \frac{1}{4}} \right).\)

Xét \(\Delta ABC\) có \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) nên \[MN\,{\rm{//}}\,BC\] (định lí Thalès đảo).

c) Ta có \[MN\,{\rm{//}}\,BC\] (câu b) và \[ED\,{\rm{//}}\,BC\] (câu a) nên \[ED\,{\rm{//}}\,MN\,{\rm{//}}\,BC.\]

Xét \(\Delta BDE\) có \[M\] là trung điểm của \[EB\] và \[MI\,{\rm{//}}\,ED\] (do \[ED\,{\rm{//}}\,MN)\]

Suy ra \[I\] là trung điểm của \[BD\] hay \[IB = ID.\]

Khi đó \[MI\] là đường trung bình của \(\Delta BDE\) nên \(MI = \frac{1}{2}ED.\)

Tương tự, trong DCDE ta cũng có \(KN = \frac{1}{2}ED,\) trong DBCE có \(MK = \frac{1}{2}BC.\)

Ta có \(IK = MK - MI = \frac{1}{2}BC - \frac{1}{2}ED = ED - \frac{1}{2}ED = \frac{1}{2}ED\).

Do đó \(MI = IK = KN = \frac{1}{2}ED\).

Câu 3

A. trung điểm một cạnh của tam giác đó.
B. trung điểm hai cạnh của tam giác đó.
C. hai đỉnh của tam giác đó.
D. một đỉnh và một trung điểm của cạnh đối diện của tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{2}{x}.\)
B. \(y = 2.\)
C. \[y = {x^2} + x + 1.\]
D. \(y = 2x - 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m =  - 5.\) 
B. \(m = \frac{1}{2}.\) 
C. \(m =  - 1.\)   
D. \(m = \frac{3}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = 4,2{\rm{\;cm}}{\rm{.}}\) 
B. \[x = 2,5{\rm{\;cm}}{\rm{.}}\]
C. \(x = 7{\rm{\;cm}}{\rm{.}}\) 
D. \(x = 5,25{\rm{\;cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP