Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\) và điểm \(A\left( {0\,;\,\,a} \right).\) Hỏi có tất cả bao nhiêu giá trị nguyên của \(a\) trong đoạn \(\left[ { - 2018\,;\,\,2018} \right]\) để từ điểm \(A\) kẻ được hai tiếp tuyến đến \(\left( C \right)\) sao cho hai tiếp điểm nằm về hai phía của trục hoành (nhập đáp án vào ô trống)?
Đáp án _____
Quảng cáo
Trả lời:
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\) Ta có \(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}}.\)
Phương trình tiếp tuyến với đồ thị \(\left( C \right)\) tại điểm \(M\left( {{x_0}\,;\,\,\frac{{{x_0} + 2}}{{{x_0} - 1}}} \right)\) là
\(y = \frac{{ - 3}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} + 2}}{{{x_0} - 1}}.\)
Tiếp tuyến đi qua điểm \(A\left( {0\,;\,\,a} \right)\) nên \(a = \frac{{3{x_0}}}{{{{\left( {{x_0} - 1} \right)}^2}}} + \frac{{\left( {{x_0} + 2} \right)}}{{\left( {{x_0} - 1} \right)}}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} \ne 1}\\{3{x_0} + \left( {{x_0} + 2} \right)\left( {{x_0} - 1} \right) = a{{\left( {{x_0} - 1} \right)}^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} \ne 1}\\{\left( {a - 1} \right)x_0^2 - 2\left( {a + 2} \right){x_0} + a + 2 = 0\;\left( 1 \right)}\end{array}} \right.} \right.\).
Để từ điểm \(A\) kẻ được 2 tiếp tuyến đến \(\left( C \right)\) thì \((1)\) có hai nghiệm phân biệt khác 1 nên
\(\left\{ {\begin{array}{*{20}{l}}{a - 1 \ne 0}\\{\Delta ' > 0}\\{\left( {a - 1} \right) - 2\left( {a + 2} \right) + a + 2 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a \ne 1}\\{{{\left( {a + 2} \right)}^2} - \left( {a - 1} \right)\left( {a + 2} \right) > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a \ne 1}\\{a > - 2}\end{array}\,\,(*).} \right.} \right.} \right.\)
Gọi \({x_1},\,\,{x_2}\) là các nghiệm của phương trình (1).
Theo định lí Viet, ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{2\left( {a + 2} \right)}}{{a - 1}}}\\{{x_1}{x_2} = \frac{{a + 2}}{{a - 1}}}\end{array}} \right.\).
Hai tiếp điểm nằm về hai phía của trục hoành khi và chỉ khi \(y\left( {{x_1}} \right) \cdot y\left( {{x_2}} \right) < 0\)
\( \Leftrightarrow \frac{{\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)}}{{\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right)}} < 0 \Leftrightarrow \frac{{{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4}}{{{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1}} < 0 \Leftrightarrow \frac{{9a + 6}}{{ - 3}} < 0 \Leftrightarrow a > - \frac{2}{3}{\rm{. }}\)
Kết hợp với điều kiện \((*)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{a > - \frac{2}{3}}\\{a \ne 1}\end{array}} \right.\).
Mà \[a \in \left[ { - 2018\,;\,\,2018} \right],\,\,a \in \mathbb{Z} \Rightarrow a \in \left\{ {0\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,2018} \right\}.\]
Vậy có tất cả 2018 giá trị nguyên của \(a\) thoả mãn yêu cầu bài toán.
Đáp án cần nhập là: 2018.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Kiến thức về đọc hiểu thông tin được nêu trong bài
Dịch: Theo bài văn, Beckham đã chơi 100 lần cho _______.
A. Real Madrid B. Manchester United
C. đội tuyển quốc gia Mỹ D. đội tuyển quốc gia Anh
Thông tin: David Beckham is an English footballer who has played for Manchester United and Real Madrid, as well as representing his country 100 times. (David Beckham là cầu thủ bóng đá người Anh, đá cho đội Manchester United và Real Madrid, cũng như 100 lần khoác áo tuyển Anh.)
Chọn D.
Lời giải
Đoạn thơ được viết theo thể tự do. Câu thơ dài ngắn không hạn định, ngắt nhịp linh hoạt,… Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. increases.
B. will increase.
C. increased.
D. increasing.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.