Câu hỏi:

23/01/2026 96 Lưu

(1 điểm). Cho hình vuông \(ABCD\) có cạnh bằng \(4\). Gọi hai điểm \(M\)\(I\) lần lượt là trung điểm của \(AB\)\(MC\). Một parabol có đỉnh là \(D\) và đi qua điểm \(B\), đường tròn tâm \(I\) đường kính \(MC\) như hình vẽ. Tính thể tích \(V\) của vật thể được tạo thành khi quay miền \(\left( R \right)\) (phần được gạch chéo) quanh trục \(AD\).

Cho hình vuông \(ABCD\) có cạnh bằ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình vuông \(ABCD\) có cạnh bằ (ảnh 2)

Xét hệ trục tọa độ có gốc tọa độ đặt tại điểm D và tia Ox trùng với tia DC, tia Oy trùng với tia DA.

Parabol \(\left( P \right)\): \(y = a{x^2}\) đi qua \(B\left( {4;4} \right)\) nên \(4 = {4^2} \cdot a \Rightarrow a = \frac{1}{4}\), suy ra \(y = \frac{1}{4}{x^2} \Rightarrow x = 2\sqrt y \).

Ta xác định được \(M\left( {2;4} \right)\)\(C\left( {4;\,0} \right)\) nên đường tròn có tâm \(I\left( {3;\,2} \right)\) và bán kính \(R = IC = \sqrt {{2^2} + {1^2}} = \sqrt 5 \) có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} = 5\).

Suy ra \[{\left( {x - 3} \right)^2} = 5 - {\left( {y - 2} \right)^2} \Leftrightarrow 3 - x = \sqrt {5 - {{\left( {y - 2} \right)}^2}} \Leftrightarrow x = 3 - \sqrt {5 - {{\left( {y - 2} \right)}^2}} \].

Phương trình hoành độ giao điểm của \(\left( P \right)\) và đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {\frac{1}{4}{x^2} - 2} \right)^2} = 5\).

\(\left( P \right)\) và đường tròn có hai giao điểm là \(B\left( {4;\,4} \right)\)\(N\left( {{x_N};\,{y_N}} \right) \Rightarrow \)\({x_N} \approx 1,37 \Rightarrow {y_N} \approx 0,469225\).

Thể tích vật thể cần tính là: \(V = \pi \int\limits_0^{0,469225} {{{\left( {2\sqrt y } \right)}^2}{\rm{d}}y} + \pi \int\limits_{0,469225}^4 {{{\left( {3 - \sqrt {5 - {{\left( {y - 2} \right)}^2}} } \right)}^2}{\rm{d}}y} \approx 14,46\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(2 \cdot {5^{x + 2}} (ảnh 1)

\(A'M \cap \left( {AB'C} \right) = B'\).

Suy ra \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{{MB'}}{{A'B'}} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right)\).

Từ \(B\) kẻ \(BN \bot AC\) tại \(N\), kẻ \(BH \bot B'N\) tại \(H\) thì \(d\left( {B,\left( {AB'C} \right)} \right) = BH\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(BN = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(B'BN\) vuông tại \(B\) nên \(BH = \frac{{BB' \cdot BN}}{{\sqrt {B{{B'}^2} + B{N^2}} }} = \frac{{2\sqrt {57} a}}{{19}}\).

Vậy \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right) = \frac{2}{3}BH = \frac{2}{3} \cdot \frac{{2\sqrt {57} a}}{{19}} = \frac{{4\sqrt {57} a}}{{57}}\).

Câu 2

A. \(\frac{{3375}}{{98}}\)\(\left( {\rm{m}} \right)\).    
B. \(\frac{{3223}}{{98}}\)\(\left( {\rm{m}} \right)\).                     
C. \(\frac{{3225}}{{98}}\)\(\left( {\rm{m}} \right)\).   
D. \(\frac{{125}}{{49}}\)\(\left( {\rm{m}} \right)\).

Lời giải

Gọi \(h\left( t \right)\) là độ cao của viên đạn bắn lên từ mặt đất sau \(t\) giây kể từ thời điểm đạn được bắn lên.

Khi đó \(h\left( t \right) = \int {v\left( t \right)} \,{\rm{dt}} = \int {\left( {25 - 9,8t} \right)} \,{\rm{dt}} = 25t - 4,9{t^2} + C\,\,\left( {\rm{m}} \right)\).

Do \[h\left( 0 \right) = 1\] nên \(C = 1\) \( \Rightarrow h\left( t \right) = - 4,9{t^2} + 25t + 1\,\,\left( {\rm{m}} \right)\).

Vậy viên đạn đạt độ cao lớn nhất là \(h = - \frac{\Delta }{{4a}} = \frac{{3223}}{{98}}\,\,\left( {\rm{m}} \right)\) khi \(t = - \frac{b}{{2a}} = \frac{{125}}{{49}}\) giây. Chọn B.

Câu 4

a) Hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].
Đúng
Sai
b) Trên đoạn \[\left[ { - 2;2} \right]\], hàm số \[f\left( x \right)\] đạt giá trị lớn nhất bằng 2.
Đúng
Sai
c) Hàm số \[f\left( x \right)\] có hai điểm cực trị.
Đúng
Sai
d) \[f\left( x \right) = {x^3} - 3x + 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP