Một công ty đang triển khai chiến dịch quảng cáo cho sản phẩm mới. Số tiền đầu tư cho quảng cáo là \(x\) (triệu đồng). Theo kết quả nghiên cứu thị trường, số lượng sản phẩm sản xuất và bán ra phụ thuộc vào chi phí quảng cáo theo hàm \(Q\left( x \right) = 1250 + \frac{{507}}{2}\ln \left( {3 + x} \right)\) (đơn vị sản phẩm). Biết rằng, chi phí sản xuất mỗi sản phẩm là \(13\) triệu đồng và giá bán mỗi sản phẩm là \(21\) triệu đồng. Giá trị lợi nhuận tối đa mà công ty có thể đạt được là \(p\) tỷ đồng (số \(p\) được làm tròn đến hàng phần mười). Tìm số \(p\).
Một công ty đang triển khai chiến dịch quảng cáo cho sản phẩm mới. Số tiền đầu tư cho quảng cáo là \(x\) (triệu đồng). Theo kết quả nghiên cứu thị trường, số lượng sản phẩm sản xuất và bán ra phụ thuộc vào chi phí quảng cáo theo hàm \(Q\left( x \right) = 1250 + \frac{{507}}{2}\ln \left( {3 + x} \right)\) (đơn vị sản phẩm). Biết rằng, chi phí sản xuất mỗi sản phẩm là \(13\) triệu đồng và giá bán mỗi sản phẩm là \(21\) triệu đồng. Giá trị lợi nhuận tối đa mà công ty có thể đạt được là \(p\) tỷ đồng (số \(p\) được làm tròn đến hàng phần mười). Tìm số \(p\).
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Hàm lợi nhuận là:
\(L\left( x \right) = 21Q\left( x \right) - 13Q\left( x \right) - x\)\( = 8Q\left( x \right) - x\)\( = 10000 + 2028\ln \left( {3 + x} \right) - x\) (triệu đồng).
\(L'\left( x \right) = \frac{{2028}}{{3 + x}} - 1 = \frac{{2025 - x}}{{3 + x}}\); \(L'\left( x \right) = 0 \Leftrightarrow x = 2025\).
Lập bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất tại \(x = 2025\).
Vậy \({L_{\max }} = L\left( {2025} \right) \approx 23417,825\) (triệu đồng) \( \Rightarrow p = 23,4\) (tỷ đồng).
Trả lời: 23,4.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai. Ta có \(y' = f'\left( x \right) = {\left( {\ln x - 2{x^2}} \right)^\prime } = \frac{1}{x} - 4x \ge 0\) khi \(x \in \left( {0;\frac{1}{2}} \right]\).
Do đó hàm số đồng biến trên khoảng \(\left( {0;\frac{1}{2}} \right)\).
b) Đúng. Ta có \(f\left( 1 \right) = \ln 1 - 2 \cdot {1^2} = - 2\); \(f\left( {{e^2}} \right) = \ln {e^2} - 2 \cdot {\left( {{e^2}} \right)^2} = 2 - 2 \cdot {e^4}\).
c) Sai. Ta có . Vậy hàm số có một điểm cực trị.
d) Sai. Ta có \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}\). Vậy \(\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = 2 - 2{e^4}\\\mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2\end{array} \right.\).
Nên \(\mathop {\min }\limits_{\left[ {1\,;{e^2}} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2{e^4}\).
Câu 2
Lời giải
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 2x,\,y = - 2{x^2} + 2x\] và hai đường thẳng \[x = 0,\,x = 1\] là \[\int\limits_0^1 {\left| {\left( {{x^2} - 2x} \right) - \left( { - 2{x^2} + 2x} \right)} \right|} \,{\rm{d}}x = 1\]. Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
