Cho hai đường thẳng \(ab\) và \(cd\) cắt nhau tại \(O\) sao cho \(\widehat {aOc} = 120^\circ \). Khẳng định nào dưới đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có: \(\widehat {aOc} = \widehat {bOd} = 120^\circ \) (đối đỉnh)
Vì \(\widehat {aOc}\) và \(\widehat {bOc}\) là hai góc kề bù nên \(\widehat {aOc} + \widehat {bOc} = 180^\circ \) hay \(\widehat {bOc} = 180^\circ - \widehat {aOc} = 180^\circ - 120^\circ = 60^\circ \).
Lại có \(\widehat {bOc} = \widehat {aOd} = 60^\circ \) (đối đỉnh).
Do đó, chọn đáp án C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 12
Ta có \(\widehat {ABD}\) và \(\widehat {DBC}\) là hai góc kề bù nên ta có: \(\widehat {ABD} + \widehat {DBC} = 180^\circ \)
Hay \(3x + 14^\circ + 12x - 14^\circ = 180^\circ \) suy ra \(15x = 180^\circ \), do đó \(x = 180^\circ :15 = 12\).
Lời giải
Đáp án: 15
Ta có \(\widehat {xOm} + \widehat {mOn} + \widehat {nOx'} = 180^\circ \)
Hay \(4x - 10^\circ + 90^\circ + 3x - 5^\circ = 180^\circ \)
Suy ra \(7x + 75^\circ = 180^\circ \) hay \(7x = 105^\circ \) nên \(x = 15^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \({\widehat O_1}\) và \({\widehat O_3}\); \({\widehat O_2}\) và \({\widehat O_3}\).
B. \({\widehat O_1}\) và \({\widehat O_2}\); \({\widehat O_3}\) và \({\widehat O_4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




