Câu hỏi:

27/01/2026 6 Lưu

Cho hình vẽ, biết \(\widehat {xAB} = 70^\circ ,\widehat {ACB} = 55^\circ \), tia \(AC\) là tia phân giác của \(\widehat {yAB}.\)

Cho hình vẽ, biết (ảnh 1)

a) \(\widehat {xAB},\widehat {BAC}\) là hai góc kề bù.

b) \(\widehat {BAy} = 110^\circ \).

c) \(\widehat {yAC} = 60^\circ \).

d) Đường thẳng \(xy\) song song với đường thẳng \(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Nhận thấy \(\widehat {xAB}\) và \(\widehat {CAB}\) chỉ là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Đúng.

Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Sai.

Có \(\widehat {xAB}\) và \(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ  - \widehat {xAB} = 180^\circ  - 70^\circ  = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = \widehat {CAB} = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Đúng.

Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC\].

b) Tam giác \[ABC\] là tam giác vuông tại \[B.\]

c) \[\widehat {DBA} = \widehat C + \widehat A\].

d) \[BE\parallel AC\].

Lời giải

a) Đúng.

Nhận thấy \[\widehat {DBA}\] và \[\widehat {CBA}\] là hai góc kề bù. Do đó, \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC.\]Vậy ý a) là đúng.

b) Sai.

Xét tam giác \[ABC\] có: \[\widehat A + \widehat B + \widehat C = 180^\circ \] (tổng ba góc trong tam giác)

Do đó, \[\widehat B = 180^\circ  - \left( {\widehat A + \widehat C} \right)\] hay \[\widehat B = 180^\circ  - \left( {60^\circ  + 60^\circ } \right) = 60^\circ \]. Do đó, tam giác \[ABC\] là tam giác đều.

Vậy ý b) là sai.

c) Đúng.

Vì \[\widehat {DBA}\] là góc ngoài tại đỉnh \[B\] của tam giác \[ABC\] nên ta có \[\widehat {DBA} = \widehat C + \widehat A\].

Vậy ý c) là đúng.

d) Đúng.

Có \[\widehat {DBA} = \widehat C + \widehat A = 60^\circ  + 60^\circ  = 120^\circ \].

Nhận thấy \[BE\] là phân giác của \[\widehat {DBA}\] nên \[\widehat {DBE} = \widehat {EBA} = \frac{{\widehat {DBA}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \].

Do đó, \[\widehat {EBA} = \widehat {BAC} = 60^\circ \].

Mà hai góc ở vị trí so le trong nên \[BE\parallel AC\].

Vậy ý d) là đúng.

Lời giải

Đáp án: 75

Nhận thấy \(\widehat {xHI} = \widehat {HIK} = 70^\circ \) (giả thiết).

Mà hai góc ở vị trí so le trong nên \(HG\parallel IK\).

Vì \(HG\parallel IK\) nên \(\widehat G = \widehat {{K_3}} = 105^\circ \) (đồng vị)

Lại có, \(\widehat {{K_3}}\) và \(\widehat {{K_1}}\) là hai góc kề bù nên \(\widehat {{K_3}} + \widehat {{K_1}} = 180^\circ \) hay \(105^\circ  + \widehat {{K_1}} = 180^\circ \).

Do đó, \(\widehat {{K_1}} = 180^\circ  - 105^\circ  = 75^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(\widehat {zKy}\) và \(\widehat {yKH}\) là hai góc ở vị trí kề bù.

Đúng
Sai

b) \(\widehat {zKy}\) và \(\widehat {KHx}\) là hai góc ở vị trí so le trong.

Đúng
Sai

c) \(\widehat {zKy} = 50^\circ \).

Đúng
Sai
d) \(Ky\parallel Hz\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP