Câu hỏi:

03/02/2026 5 Lưu

Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?

A. \[N\] là trung điểm \[OC.\]                   
B. \[\Delta AFM = \Delta AON.\]
C. Tam giác \[AMN\] đều.                                                            
D. Cả A, B, C đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Phép quay thuận chiều tâm \[O\] biến điể (ảnh 1)

– Xét phương án A:

Tổng 6 góc của lục giác đều \[ABCDEF\]bằng tổng các góc trong hai tứ giác \[ABCD\] và \[AFED.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ  = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ \] hay \[\widehat {AFM} = \widehat {BCD} = 120^\circ .\]

Vì \[CB = CD\] (chứng minh trên) nên tam giác \[BCD\] cân tại \[C.\]

Do đó \[CO\] vừa là đường trung tuyến, vừa là đường phân giác của tam giác \[BCD\].

Vì vậy \[\widehat {OCB} = \frac{{\widehat {BCD}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OC\] (vì \[O\] là tâm của lục giác đều \[ABCDEF\]).

Suy ra tam giác \[OBC\] cân tại \[O\].

Mà \[\widehat {OCB} = 60^\circ \] (chứng minh trên). Do đó tam giác \[OBC\] đều.

Chứng minh tương tự cho các tam giác \[OCD,{\rm{ }}OAB,{\rm{ }}OAF,\,\,ODE,\,\,OEF,\] ta được \[\Delta OCD,{\rm{ }}\Delta OAB,\] \[\Delta OAF,{\rm{ }}\Delta ODE,\,\,\Delta OEF\] là các tam giác đều.

Ta có tam giác \[OBC\] đều nên \[OB = BC = OC,\] mà \[OB = OC = OD\] và \[BC = CD\] nên \[OB = BC = CD = OD.\] Suy ra tứ giác \[OBCD\] là hình thoi.

Do đó hai đường chéo \[OC\] và \[BD\] vuông góc với nhau tại trung điểm \[N\] của mỗi đường.

Vậy N là trung điểm \[OC.\]

– Xét phương án B:

Ta có \[\widehat {AOB} = \widehat {BOC} = 60^\circ \] (vì các tam giác \[OAB,{\rm{ }}OBC\] đều).

Suy ra \[\widehat {AOC} = \widehat {AOB} + \widehat {BOC} = 60^\circ  + 60^\circ  = 120^\circ .\]

Ta có \[EF = OC\] (cùng bằng OF) và \[M,{\rm{ }}N\] lần lượt là trung điểm \[EF,{\rm{ }}OC\] nên \[FM = ON.\]

Xét \[\Delta AFM\] và \[\Delta AON\] có:

\[\widehat {AFM} = \widehat {AON} = 120^\circ \,;\]

\[AF = AO\] (tam giác \[OAF\] đều);

\[FM = ON\] (chứng minh trên).

Do đó \[\Delta AFM = \Delta AON{\rm{ }}\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right){\rm{.}}\]

– Xét phương án C:

Từ kết quả câu b), ta được \[AM = AN\] và \[\widehat {FAM} = \widehat {OAN}\,.\]

Suy ra \[\Delta AMN\] cân tại \[A.\]

Ta có \[\widehat {FAO} = 60^\circ \] (do \[\Delta OAF\] đều).

Suy ra \[\widehat {FAM} + \widehat {MAO} = 60^\circ \] nên \[\widehat {OAN} + \widehat {MAO} = 60^\circ \] hay \[\widehat {MAN} = 60^\circ .\]

Xét \[\Delta AMN\] cân tại \[A\] có \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] đều.

Do đó phương án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 1.                           
B. 2.                         
C. 3.                               
D. 4.

Lời giải

Chọn D

Với \[0^\circ  \le \alpha  < 360^\circ \], các phép quay thuận chiều tâm \[O\] biến hình vuông trên thành chính nó là \(0^\circ \,;\,\,90^\circ \,;\,\,180^\circ \,;\,\,270^\circ .\)

Câu 2

A. \[8{\rm{ cm}}.\]   
B. \[5{\rm{ cm}}.\] 
C. \[4{\rm{ cm}}.\]                      
D. \[2{\rm{ cm}}.\]

Lời giải

Chọn C

Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ  = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]

Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra \[AO\] là đường trung trực của đoạn BF.

Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]

Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]

Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).

Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]

Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).

Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]

Câu 3

A. \(\frac{{\left( {n - 2} \right).180^\circ }}{n}\)                       
B. \(\frac{{\left( {n - 2} \right).180^\circ }}{{2n}}\)                      
C. \(n(n - 2)\)                             
D. \(\frac{{\left( {n + 2} \right).180^\circ }}{n}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 5                            
B. 6                          
C. 7                                
D. 8

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Phép quay thuận chiều và phép quay đảo chiều.
B. Phép quay thuận chiều và phép quay ngược chiều.
C. Phép quay xuôi chiều và phép quay đảo chiều.
D. Phép quay xuôi chiều và phép quay ngược chiều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 1.                           
B. 2.                         
C. 3.                               
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(120^\circ \).        
B. \(150^\circ \).      
C. \(90^\circ \).                               
D. \(135^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP