Câu hỏi:

21/02/2026 4 Lưu

Cho hai đa thức \(A\left( x \right) = {x^5} - 3{x^4} + {x^2} - 5\) và \(B\left( x \right) = 2{x^4} + 7{x^3} - {x^2} + 6\). Biết rằng\(C\left( x \right) = A\left( x \right) + B\left( x \right)\). Hỏi hệ số tự do của của \(C\left( x \right)\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1

Đáp án: 1

Ta có: \(C\left( x \right) = A\left( x \right) + B\left( x \right) = {x^5} - 3{x^4} + {x^2} - 5 + 2{x^4} + 7{x^3} - {x^2} + 6\)

\( = {x^5} - 3{x^4} + 2{x^4} + 7{x^3} + {x^2} - {x^2} + 6 - 5\)

\( = {x^5} - {x^4} + 7{x^3} + 1\).

Vậy \(C\left( x \right) = {x^5} - {x^4} + 7{x^3} + 1\) có hệ số tự do là 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 2

Cộng theo ta được:

\(\frac{\begin{array}{l}P\left( x \right) + Q\left( x \right) = 3{x^2} - 6x + 5\\P\left( x \right) - Q\left( x \right) = {x^2} + 2x - 3\end{array}}{{2P\left( x \right) = 4{x^2} - 4x + 2}}\)

Do đó, \(2P\left( x \right) = 2\left( {2{x^2} - 2x + 1} \right)\).

Suy ra \(P\left( x \right) = 2{x^2} - 2x + 1\).

Hệ số bậc vao nhất của \(P\left( x \right)\) là 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP